11.设F1.F2分别为椭圆C:+=1(a>b>0)的左.右两个焦点.已知椭圆具有性质:若M.N是椭圆C上关于原点对称的两个点.点P是椭圆上任意一点.当直线PM.PN的斜率都存在.并记为kPM.kPN时.那么kPM与kPN之积是与点P位置无关的定值.试对双曲线-=1写出具有类似特征的性质.并加以证明. 查看更多

 

题目列表(包括答案和解析)

设F1、F2分别为椭圆C:=1(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为2.
(1)求椭圆C的焦距;
(2)如果=2,求椭圆C的方程.

查看答案和解析>>

设F1、F2分别为椭圆C:=1(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为2.

(1)求椭圆C的焦距;

(2)如果=2,求椭圆C的方程.

 

查看答案和解析>>

设F1、F2分别为椭圆C:=1(a>b>0)的左、右焦点,过F2的直线l与椭圆C相交于A,B两点,直线l的倾斜角为60°,F1到直线l的距离为2.
(1)求椭圆C的焦距;
(2)如果=2,求椭圆C的方程.

查看答案和解析>>

F1F2分别为椭圆C:=1(ab>0)的左、右两个焦点.

(1)若椭圆C上的点A(1,)到F1F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;

(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;

(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPMkPN时,那么kPM与kPN之积是与点P位置无关的定值,试写出双曲线=1具有类似特性的性质并加以证明.

查看答案和解析>>

设F1、F2分别为椭圆C:=1(a>b>0)的左、右两个焦点.

(1)若椭圆C上的点A(1,)到F1、F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;

(2)设点K是(1)中所得椭圆上的动点,求线段F1K的中点的轨迹方程;

(3)已知椭圆具有性质:若M、N是椭圆C上关于原点对称的两个点,点P是椭圆上任意一点,当直线PM、PN的斜率都存在,并记为kPM、kPN时,那么kPM与kPN之积是与点P位置无关的定值,试写出双曲线=1具有类似特性的性质并加以证明.

查看答案和解析>>


同步练习册答案