题目列表(包括答案和解析)
设函数
.
(Ⅰ) 当
时,求
的单调区间;
(Ⅱ) 若
在
上的最大值为
,求
的值.
【解析】第一问中利用函数
的定义域为(0,2),
.
当a=1时,
所以
的单调递增区间为(0,
),单调递减区间为(
,2);
第二问中,利用当
时,
>0, 即
在
上单调递增,故
在
上的最大值为f(1)=a 因此a=1/2.
解:函数
的定义域为(0,2),
.
(1)当
时,
所以
的单调递增区间为(0,
),单调递减区间为(
,2);
(2)当
时,
>0, 即
在
上单调递增,故
在
上的最大值为f(1)=a 因此a=1/2.
已知函数
的最小值为0,其中![]()
(Ⅰ)求
的值;
(Ⅱ)若对任意的
有
≤
成立,求实数
的最小值;
(Ⅲ)证明
(
).
【解析】(1)解:
的定义域为![]()
![]()
由
,得![]()
当x变化时,
,
的变化情况如下表:
|
x |
|
|
|
|
|
- |
0 |
+ |
|
|
|
极小值 |
|
因此,
在
处取得最小值,故由题意
,所以![]()
(2)解:当
时,取
,有
,故
时不合题意.当
时,令
,即![]()
![]()
令
,得![]()
①当
时,
,
在
上恒成立。因此
在
上单调递减.从而对于任意的
,总有
,即
在
上恒成立,故
符合题意.
②当
时,
,对于
,
,故
在
上单调递增.因此当取
时,
,即
不成立.
故
不合题意.
综上,k的最小值为
.
(3)证明:当n=1时,不等式左边=
=右边,所以不等式成立.
当
时,![]()
![]()
![]()
在(2)中取
,得
,
从而![]()
![]()
所以有![]()
![]()
![]()
![]()
![]()
![]()
综上,
,![]()
给定函数f(x):对任意m∈Z,当x∈(2m-1,2m]时,f(x)=2m-x.给出如下结论:①函数f(x)的定义域为(0,+∞);②函数f(x)的值域为[0,+∞);③方程f(x)-kx=0有解的充要条件是k∈(0,1);④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)
(2k,2k+1)”.⑤当x∈(0,+∞)时,恒有f(2x)=2f(x)成立;⑥若数列{an}满足:an=f(2n+1),则数列{an}的前n项和为Sn=2n+1-n-2.其中正确结论的序号是________.(写出所有正确结论的序号)
已知奇函数y=f(x)的定义域为(-∞,+∞),且满足条件:①当x>0时,f(x)<0;②对于任意实数x、y都有f(x+y)=f(x)+f(y).
(1)根据函数单调性的定义,证明y=f(x)是减函数;
(2)若x>0时不等式f(ax-2)+f(x-x2)>0恒成立,求实数a的取值范围.
已知定义在
上的函数
满足下列条件:1对定义域内任意
,恒有
;2当
时
;3
(1)求
的值;(2)求证:函数
在
上为减函数;(3)解不等式 :![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com