解:(1)∵. ∴值域为 (2)∵ ∴ ∴值域为 (3)的减函数. 当∴值域为 查看更多

 

题目列表(包括答案和解析)

设函数

(Ⅰ) 当时,求的单调区间;

(Ⅱ) 若上的最大值为,求的值.

【解析】第一问中利用函数的定义域为(0,2),.

当a=1时,所以的单调递增区间为(0,),单调递减区间为(,2);

第二问中,利用当时, >0, 即上单调递增,故上的最大值为f(1)=a 因此a=1/2.

解:函数的定义域为(0,2),.

(1)当时,所以的单调递增区间为(0,),单调递减区间为(,2);

(2)当时, >0, 即上单调递增,故上的最大值为f(1)=a 因此a=1/2.

 

查看答案和解析>>

已知函数的最小值为0,其中

(Ⅰ)求的值;

(Ⅱ)若对任意的成立,求实数的最小值;

(Ⅲ)证明).

【解析】(1)解: 的定义域为

,得

当x变化时,的变化情况如下表:

x

-

0

+

极小值

因此,处取得最小值,故由题意,所以

(2)解:当时,取,有,故时不合题意.当时,令,即

,得

①当时,上恒成立。因此上单调递减.从而对于任意的,总有,即上恒成立,故符合题意.

②当时,,对于,故上单调递增.因此当取时,,即不成立.

不合题意.

综上,k的最小值为.

(3)证明:当n=1时,不等式左边==右边,所以不等式成立.

时,

                      

                      

在(2)中取,得

从而

所以有

     

     

     

     

      

综上,

 

查看答案和解析>>

给定函数f(x):对任意m∈Z,当x∈(2m-1,2m]时,f(x)=2m-x.给出如下结论:①函数f(x)的定义域为(0,+∞);②函数f(x)的值域为[0,+∞);③方程f(x)-kx=0有解的充要条件是k∈(0,1);④“函数f(x)在区间(a,b)上单调递减”的充要条件是“存在k∈Z,使得(a,b)(2k,2k+1)”.⑤当x∈(0,+∞)时,恒有f(2x)=2f(x)成立;⑥若数列{an}满足:an=f(2n+1),则数列{an}的前n项和为Sn=2n+1-n-2.其中正确结论的序号是________.(写出所有正确结论的序号)

查看答案和解析>>

已知奇函数y=f(x)的定义域为(-∞,+∞),且满足条件:①当x>0时,f(x)<0;②对于任意实数x、y都有f(x+y)=f(x)+f(y).

(1)根据函数单调性的定义,证明y=f(x)是减函数;

(2)若x>0时不等式f(ax-2)+f(x-x2)>0恒成立,求实数a的取值范围.

查看答案和解析>>

已知定义在上的函数满足下列条件:1对定义域内任意,恒有;2当;3(1)求的值;(2)求证:函数上为减函数;(3)解不等式 :

 

查看答案和解析>>


同步练习册答案