题目列表(包括答案和解析)
(本题满分15分)
设
分别是椭圆
的左、右焦点.
⑴若
是该椭圆上的一点,且
,求
的面积;
⑵若
是该椭圆上的一个动点,求
的最大值和最小值;
⑶设过定点
的直线
与椭圆交于不同的两点
,且
为锐角(其中
为坐标原点),求直线
的斜率
的取值范围.
(本小题满分15分)
如图,椭圆
的中心在原点,焦点在
轴上,
分别是椭圆
的左、右焦点,
是椭圆短轴的一个端点,过
的直线
与椭圆交于
两点,
的面积为
,
的周长为
.
![]()
(1)求椭圆
的方程;
(2)设点
的坐标为
,是否存在椭圆上的点
及以
为圆心的一个圆,使得该圆与直线
都相切,如存在,求出
点坐标及圆的方程,如不存在,请说明理由.
(本小题满分15分)
如图,椭圆
的中心在原点,焦点在
轴上,
分别是椭圆
的左、右焦点,
是椭圆短轴的一个端点,过
的直线
与椭圆交于
两点,
的面积为
,
的周长为
.
(1)求椭圆
的方程;
(2)设点
的坐标为
,是否存在椭圆上的点
及以
为圆心的一个圆,使得该圆与直线
都相切,如存在,求出
点坐标及圆的方程,如不存在,请说明理由.
(本小题满分15分)
如图,已知椭圆
过点
,离心率为
,左、右焦点分别为
、
。点
为直线
上且不在
轴上的任意一点,直线
和
与椭圆的交点分别为
、
和
、
,
为坐标原点.
(I)求椭圆的标准方程;
(II)设直线
、
的斜线分别为
、
.
(i)证明:
;
(ii)问直线
上是否存在点
,使得直线
、
、
、
的斜率
、
、
、
满足
?若存在,求出所有满足条件的点
的坐标;若不存在,说明理由.
(本小题满分15分)
如图,椭圆
的中心在原点,焦点在
轴上,
分别是椭圆
的左、右焦点,
是椭圆短轴的一个端点,过
的直线
与椭圆交于
两点,
的面积为
,
的周长为
.
(1)求椭圆
的方程;
(2)设点
的坐标为
,是否存在椭圆上的点
及以
为圆心的一个圆,使得该圆与直线
都相切,如存在,求出
点坐标及圆的方程,如不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com