题目列表(包括答案和解析)
. (本小题满分12分)
已知椭圆
上任意一点到两焦点距离之和为4,直线
为该椭圆的一条准线.
1)求椭圆C的方程;
2)设直线
与椭圆C交于不同的两点
且
(其中
为坐标原点),求直线
的斜率
的取值范围.
(本小题满分12分) 已知椭圆
的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足![]()
点P是线段F1Q与该椭圆的交点,
点T在线段F2Q上,并且满足
(Ⅰ)设
为点P的横坐标,证明
;
(Ⅱ)求点T的轨迹C的方程; (Ⅲ)试问:在点T的轨迹C上,是否存在点M,
使△F1MF2的面积S=
若存在,求∠F1MF2的正切值;若不存在,请说明理由.
(本小题满分12分)
如图,已知椭圆
的离心率为
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
.
![]()
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线
、
的斜率分别为
、
,证明
;
(Ⅲ)是否存在常数
,使得
恒成立?若存在,求
的值;若不存在,请说明理由.
(本小题满分12分)
如图,已知椭圆
的离心率为
,以该椭圆上的点和椭圆的左、右焦点
为顶点的三角形的周长为
.一等轴双曲线的顶点是该椭圆的焦点,设
为该双曲线上异于顶点的任一点,直线
和
与椭圆的交点分别为
和
.
![]()
(Ⅰ)求椭圆和双曲线的标准方程;
(Ⅱ)设直线
、
的斜率分别为
、
,证明
;
(Ⅲ)是否存在常数
,使得
恒成立?若存在,求
的值;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com