16.证明(1) 如图取的中点为.连AF,C’F, 易得AFC’F为平行四边形. ,又 ---..4分 (2)连接,因是菱形故有 又为正三棱柱故有 所以,而 所以面面 -----9分 (3)设B’D与BD’的交点为O ,由图得 四棱锥与的公共部分为 四棱锥O-ABCD 且易得O到下底面的距离为1. 所以公共部分的体积为. --..14分 查看更多

 

题目列表(包括答案和解析)

如图,三棱锥中,侧面底面, ,且,.(Ⅰ)求证:平面;

(Ⅱ)若为侧棱PB的中点,求直线AE与底面所成角的正弦值.

【解析】第一问中,利用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以第二问中结合取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,因为PA=PC,所以PO⊥AC,同(Ⅰ)易证平面ABC,又EH//PO,所以EH平面ABC ,

为直线AE与底面ABC 所成角,

 (Ⅰ) 证明:由用由知, ,

又AP=PC=2,所以AC=2,

又AB=4, BC=2,,所以,所以,即,

又平面平面ABC,平面平面ABC=AC, 平面ABC,

平面ACP,所以

………………………………………………6分

(Ⅱ)如图, 取AC中点O,连接PO、OB,并取OB中点H,连接AH、EH,

因为PA=PC,所以PO⊥AC,同(Ⅰ)易证平面ABC,

又EH//PO,所以EH平面ABC ,

为直线AE与底面ABC 所成角,

………………………………………10分

又PO=1/2AC=,也所以有EH=1/2PO=,

由(Ⅰ)已证平面PBC,所以,即,

,

于是

所以直线AE与底面ABC 所成角的正弦值为

 

查看答案和解析>>

19、如图所示,在三棱锥P-ABC中,PA⊥平面ABC,AB=BC=CA=3,M为AB的中点,四点P、A、M、C都在球O的球面上.
(1)证明:平面PAB⊥平面PCM;
(2)证明:线段PC的中点为球O的球心.

查看答案和解析>>

如图所示,在三棱锥P-ABC中,PA⊥平面ABC,AB=BC=CA=3,M为AB的中点,四点P、A、M、C都在球O的球面上.

(1)证明:平面PAB⊥平面PCM;

(2)证明:线段PC的中点为球O的球心

 

查看答案和解析>>

如图,的内心为分别是的中点,,内切圆分别与边相切于;证明:三线共点.

 

 

查看答案和解析>>

如图所示,空间中有一直角三角形为直角,,现以其中一直角边为轴,按逆时针方向旋转后,将点所在的位置记为,再按逆时针方向继续旋转后,点所在的位置记为.
(1)连接,取的中点为,求证:面
(2)求与平面所成的角的正弦值.

查看答案和解析>>


同步练习册答案