若.方程表示的圆的个数为( ). A.0个 B.1个 C.2个 D.3个 解析:B 得.满足条件的只有一个.方程表示的圆的个数为1. 查看更多

 

题目列表(包括答案和解析)

已知椭圆E:数学公式的上顶点为M(0,1),两条过M点动弦MA、MB满足MA⊥MB.
(1)当坐标原点到椭圆E的准线距离最短时,求此时椭圆E的方程;
(2)若直角三角形MAB的面积的最大值为数学公式,求a的值;
(3)对于给定的实数a(a>1),动直线是否经过一个定点?如果经过,求出该定点的坐标(用a表示)否则,说明理由.

查看答案和解析>>

已知椭圆E:的上顶点为M(0,1),两条过M点动弦MA、MB满足MA⊥MB.
(1)当坐标原点到椭圆E的准线距离最短时,求此时椭圆E的方程;
(2)若直角三角形MAB的面积的最大值为,求a的值;
(3)对于给定的实数a(a>1),动直线是否经过一个定点?如果经过,求出该定点的坐标(用a表示)否则,说明理由.

查看答案和解析>>

已知椭圆E:
x2
a2
+y2=1(a>1)
的上顶点为M(0,1),两条过M点动弦MA、MB满足MA⊥MB.
(1)当坐标原点到椭圆E的准线距离最短时,求此时椭圆E的方程;
(2)若直角三角形MAB的面积的最大值为
27
8
,求a的值;
(3)对于给定的实数a(a>1),动直线是否经过一个定点?如果经过,求出该定点的坐标(用a表示)否则,说明理由.

查看答案和解析>>

已知椭圆E:
x2
a2
+y2=1(a>1)
的上顶点为M(0,1),两条过M点动弦MA、MB满足MA⊥MB.
(1)当坐标原点到椭圆E的准线距离最短时,求此时椭圆E的方程;
(2)若直角三角形MAB的面积的最大值为
27
8
,求a的值;
(3)对于给定的实数a(a>1),动直线是否经过一个定点?如果经过,求出该定点的坐标(用a表示)否则,说明理由.

查看答案和解析>>

已知动直线y=kx交圆(x-2)2+y2=4于坐标原点O和点A,交直线x=4于点B,若动点M满足,动点M的轨迹C的方程为F(x,y)=0.
(1)试用k表示点A、点B的坐标;
(2)求动点M的轨迹方程F(x,y)=0;
(3)以下给出曲线C的五个方面的性质,请你选择其中的三个方面进行研究,并说明理由(若你研究的方面多于三个,我们将只对试卷解答中的前三项予以评分).
①对称性;(2分)
②顶点坐标(定义:曲线与其对称轴的交点称为该曲线的顶点);(2分)
③图形范围;(2分)
④渐近线;(3分)
⑤对方程F(x,y)=0,当y≥0时,函数y=f(x)的单调性.(3分)

查看答案和解析>>


同步练习册答案