如图11.表示小兵放学回家途中骑车时间与速度的关系.你能想像一个适合它的实际情境吗? ( 查看更多

 

题目列表(包括答案和解析)

如图所示表示玲玲骑自行车离家的距离与时间的关系,她9点离开家,15点回到家,请根据图像回答下列问题:

    (1)玲玲到达离家最远的地方是什么时间?离家多远?

    (2)她何时开始第一次休息?休息多长时间?

    (3)第一次休息时,离家多远?

    (4)11:00到12:00她骑了多少千米?

    (5)她在9:00~10:00和10:00~10:30的平均速度各是多少?

    (6)她在何时至何时停止前进并休息用午餐?

    (7)她在停止前进后返回,骑了多少千米?

(8)返回时的平均速度是多少?

查看答案和解析>>

(2013•连云港)我市某海域内有一艘轮船发生故障,海事救援船接到求救信号后立即从港口出发沿直线匀速前往救援,与故障渔船会合后立即将其拖回.如图折线段O-A-B表示救援船在整个航行过程中离港口的距离y(海里)随航行时间x(分钟)的变化规律.抛物线y=ax2+k表示故障渔船在漂移过程中离港口的距离y(海里)随漂移时间x(分钟)的变化规律.已知救援船返程速度是前往速度的
23
.根据图象提供的信息,解答下列问题:
(1)救援船行驶了
16
16
海里与故障船会合;
(2)求该救援船的前往速度;
(3)若该故障渔船在发出求救信号后40分钟内得不到营救就会有危险,请问救援船的前往速度每小时至少是多少海里,才能保证故障渔船的安全.

查看答案和解析>>

如图①是一个长为4a、宽为b的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后用四块小长方形拼成的一个“回形”正方形(如图②).

(1)图②中的阴影部分的面积为
(b-a)2
(b-a)2

(2)观察图②请你写出 (a+b)2、(a-b)2、ab之间的等量关系是
(a+b)2=(a-b)2+4ab
(a+b)2=(a-b)2+4ab

(3)根据(2)中的结论,若p-q=-4,p•q=
94
,则(p+q)2=
25
25

(4)实际上有许多代数恒等式可以用图形的面积来表示.如图③,它表示了
(a+b)(3a+b)=3a2+4ab+b2
(a+b)(3a+b)=3a2+4ab+b2

(5)试画出一个几何图形,使它的面积能表示(2a+b)(a+2b)=2a2+5ab+2b2

查看答案和解析>>

如图11-1,是我们平时使用的等臂圆规,即CA=CB.若n个相同规格的等臂圆规的两脚依次摆放在同一条直线上如图2所示,其张角度数变化如下:∠A1C1A2=160°,∠A2C2A3=80°,∠A3C3A4=40°,∠A4C4A5=20°,…. ,根据上述规律请你写出∠AnCnAn+1=_______________°.(用含n的代数式表示)

 

查看答案和解析>>

如图11-1,是我们平时使用的等臂圆规,即CA=CB.若n个相同规格的等臂圆规的两脚依次摆放在同一条直线上如图2所示,其张角度数变化如下:∠A1C1A2=160°,∠A2C2A3=80°,∠A3C3A4=40°,∠A4C4A5=20°,…. ,根据上述规律请你写出∠AnCnAn+1=_______________°.(用含n的代数式表示)

 

查看答案和解析>>


同步练习册答案