如图(1).在Rt△ADB中.∠D=90°,C为BD上一点.则x可能为( ) A.10° B.20° C.30° D.40° 查看更多

 

题目列表(包括答案和解析)

如图,在△BCD中,∠BDC=90°,以BD为斜边,向外作Rt△ABD.若AD=4,∠ADB=∠C.且P是BC边上一动点,则DP长的最小值为
4
4

查看答案和解析>>

如图,在△BCD中,∠BDC=90°,以BD为斜边,向外作Rt△ABD.若AD=4,∠ADB=∠C.且P是BC边上一动点,则DP长的最小值为________.

查看答案和解析>>

24、先阅读下面的材料,然后解答问题:
已知:如图1等腰直角三角形ABC中,∠B=90°,AD是角平分线,交BC边于点D.
求证:AC=AB+BD.
证明:如图1,在AC上截取AE=AB,连接DE,则由已知条件易知:Rt△ADB≌Rt△ADE(AAS)
∴∠AED=∠B=90°,DE=DB
又∵∠C=45°,∴△DEC是等腰直角三角形.
∴DE=EC.
∴AC=AE+EC=AB+BD.
我们将这种证明一条线段等于另两线段和的方法称为“截长法”.
解决问题:现将原题中的“AD是内角平分线,交BC边于点D”换成“AD是外角平分线,交BC边的延长线于点D,如图2”,其他条件不变,请你猜想线段AC、AB、BD之间的数量关系,并证明你的猜想.

查看答案和解析>>

先阅读下面的材料,然后解答问题:
已知:如图1等腰直角三角形ABC中,∠B=90°,AD是角平分线,交BC边于点D.
求证:AC=AB+BD.
证明:如图1,在AC上截取AE=AB,连接DE,则由已知条件易知:Rt△ADB≌Rt△ADE(AAS)
∴∠AED=∠B=90°,DE=DB
又∵∠C=45°,∴△DEC是等腰直角三角形.
∴DE=EC.
∴AC=AE+EC=AB+BD.
我们将这种证明一条线段等于另两线段和的方法称为“截长法”.
解决问题:现将原题中的“AD是内角平分线,交BC边于点D”换成“AD是外角平分线,交BC边的延长线于点D,如图2”,其他条件不变,请你猜想线段AC、AB、BD之间的数量关系,并证明你的猜想.

查看答案和解析>>

先阅读下面的材料,然后解答问题:
已知:如图1等腰直角三角形ABC中,∠B=90°,AD是角平分线,交BC边于点D.
求证:AC=AB+BD.
证明:如图1,在AC上截取AE=AB,连接DE,则由已知条件易知:Rt△ADB≌Rt△ADE(AAS)
∴∠AED=∠B=90°,DE=DB
又∵∠C=45°,∴△DEC是等腰直角三角形.
∴DE=EC.
∴AC=AE+EC=AB+BD.
我们将这种证明一条线段等于另两线段和的方法称为“截长法”.
解决问题:现将原题中的“AD是内角平分线,交BC边于点D”换成“AD是外角平分线,交BC边的延长线于点D,如图2”,其他条件不变,请你猜想线段AC、AB、BD之间的数量关系,并证明你的猜想.

查看答案和解析>>


同步练习册答案