已知:如图.E.F分别是AB和CD上的点.DE.AF分别交BC于G.H.A=D.1=2.求证:B=C. 查看更多

 

题目列表(包括答案和解析)

已知:如图,等边△ABC的边长是4,D是边BC上的一个动点(与点B、C不重合),连接AD,精英家教网作AD的垂直平分线分别与边AB、AC交于点E、F.
(1)求△BDE和△DCF的周长和;
(2)设CD长为x,△BDE的周长为y,求y关于x的函数解析式,并写出它的定义域;
(3)当△BDE是直角三角形时,求CD的长.

查看答案和解析>>

已知:如图,点C是线段AB上的任意一点(点C与A、B点不重合),分别以AC、BC为边在直线AB的同侧作等边△ACD和等边△BCE,AE与CD相交于点M,BD和CE相交于点N.
(1)求证:△ACE≌△DCB;
(2)如果AB的长为10cm,MN=ycm,AC=xcm.
①请写出y与x之间的函数关系式,并指出自变量的取值范围.
②当点C在何处时MN的长度最长?并求MN的最大长度.

查看答案和解析>>

已知:如图,正方形纸片ABCD的边长是4,点M、N分别在两边AB和CD上(其中点N不与点C重合),沿直线MN折叠该纸片,点B恰好落在AD边上点E处.
(1)设AE=x,四边形AMND的面积为 S,求 S关于x 的函数解析式,并指明该函数的定义域;
(2)当AM为何值时,四边形AMND的面积最大?最大值是多少?
(3)点M能是AB边上任意一点吗?请求出AM的取值范围.

查看答案和解析>>

已知:如图,在△ABC中,CD⊥AB,CD=BD,BF平分∠DBC,与CD,AC分别交于点E、点F,且DA=DE,H是BC边的中点,连结DH与BE相交于点G.
(1)求证:△EBD≌△ACD;
(2)求证:点G在∠DCB的平分线上;
(3)试探索CF、GF和BG之间的等量关系,并证明你的结论.

查看答案和解析>>

已知:如图,图1是△ABC,图2是“8字形”(将线段AB、CD相交于点O,连接AD、CB形成的图形),图3是一个五角星形状,试解答下列问题:

(1)图1的△ABC中,∠A+∠B+∠C=
180°
180°
,并证明你写出的结论;(要有推理证明过程)
(2)图2的“8字形”中,请直接写出∠A、∠B、∠C、∠D之间的数量关系:
∠A+∠D=∠C+∠B
∠A+∠D=∠C+∠B

(3)若在图2的条件下,作∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD、AB分别相交于M、N(如图4).请直接写出∠P与∠D、∠B之间数量关系:
∠P=
1
2
(∠D+∠B)
∠P=
1
2
(∠D+∠B)

(4)图3中的点A向下移到线段BE上时,请直接写出∠CAD+∠B+∠C+∠D+∠E=
180°
180°

查看答案和解析>>


同步练习册答案