3. 三角形的三边关系 (1) 三角形的任意两边之和大于第三边 (2) 三角形的任意两边之差小于第三边 查看更多

 

题目列表(包括答案和解析)

对四边形的观察与探索

  四边形是大家最熟悉的图形之一,我们已经发现了它的许多性质.只要善于观察、乐于探索,我们还会发现更多的结论.

  问题的提出:四边形一条对角线上任意一点与另外两个顶点的连线,将四边形分成四个三角形,其中相对的两对三角形的面积之积有何关系?你能探索出结论吗?

(1)为了更直观的发现问题,我们不妨先在特殊的四边形--平行四边形中,研究这个问题:

已知:在ABCD中,O是对角线BD上任意一点(如图),求证:S△OBC·S△OAD=S△OAB·S△OCD

(2)有了(1)中的探索过程作参照,你一定能类比出在一般四边形(如图)中,解决问题的办法了吧!填写结论并写出证明过程.

已知:在四边形ABCD中,O是对角线BD上任意一点(如图)

求证:________________

(3)在三角形中(如图),你能否归纳出类似的结论?若能,用文字叙述你归纳出的结论,并写出已知、求证和证明过程;若不能,说明理由.

查看答案和解析>>

下图甲是任意一个直角三角形ABC,它的两条直角边的边长分别为a、b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.

①图乙、图丙中(1)(2)(3)都是正方形.由图可知:(1)是以
a
a
为边长的正方形,(2)是以
b
b
为边长的正方形,(3)的四条边长都是
c
c
,且每个角都是直角,所以(3)是以
c
c
为边长的正方形.
②图中(1)的面积
a 2
a 2
,(2)的面积为
b 2
b 2
,(3)的面积为
c 2
c 2

③图中(1)(2)面积之和为
a2+b 2
a2+b 2

④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?

查看答案和解析>>

下图甲是任意一个直角三角形ABC,它的两条直角边的边长分别为a、b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.

①图乙和图丙中(1)(2)(3)是否为正方形?为什么?

②图中(1)(2)(3)的面积分别是多少?

③图中(1)(2)的面积之和是多少?

④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么?

由此你能得到关于直角三角形三边长的关系吗?

 

查看答案和解析>>

下图甲是任意一个直角三角形ABC,它的两条直角边的边长分别为a、b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.

①图乙、图丙中(1)(2)(3)都是正方形.由图可知:(1)是以______为边长的正方形,(2)是以______为边长的正方形,(3)的四条边长都是______,且每个角都是直角,所以(3)是以______为边长的正方形.
②图中(1)的面积______,(2)的面积为______,(3)的面积为______.
③图中(1)(2)面积之和为______.
④图中(1)(2)的面积之和与正方形(3)的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?

查看答案和解析>>

运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.
(1)如图1,在等腰三角形ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2.请用面积法证明:h1+h2=h;
精英家教网
(2)当点M在BC延长线上时,h1、h2、h之间的等量关系式是
 
;(直接写出结论不必证明)
(3)如图2在平面直角坐标系中有两条直线l1:y=
34
x+3、l2:y=-3x+3,若l2上的一点M到l1的距离是1,请运用(1)、(2)的结论求出点M的坐标.

查看答案和解析>>


同步练习册答案