若AE是△ABC的中线.BC = 4.则BE = = . 查看更多

 

题目列表(包括答案和解析)

如图,在△ABC中,AB=AC=22cm,DE是线段AB的垂直平分线,分别 交AB、AC于D、E两点。
下列4个结论:
(1)AE=BE;
(2)∠C>∠A;
(3)若∠C=70° ,则∠CBE=30° ; 
(4)若BC=10cm,则△BCE的周长是32cm
其中正确的序号是(     )。

查看答案和解析>>

如图,△ABC中,∠ACB=90°,以AC为一边在△ABC外作等边三角形ACD,过点D作DE⊥AC,垂足为F,DE与AB相交于点E,连接CE。
(1)求证:AE=CE=BE;
(2)若AB=15cm,BC=9cm,P是射线DE上的一点.则当DP为何值时,△PBC的周长最小,并求出此时△PBC的周长。

查看答案和解析>>

如图,在⊿ABC中,AB=BC。以AB为直径作圆⊙O交AC于点D,点E为⊙O上一点,连接ED并延长与BC的延长线交于点F.连接AE、BE,∠BAE=60°,∠F=15°,解答下列问题.

(1)求证:直线FB是⊙O的切线;

(2)若EF=cm,则AC=             cm.

 


查看答案和解析>>

活动一:如图1,在Rt△ABC中,D为斜边AB上的一点,AD=2,BD=1,且四边形DECF是正方形,求阴影部分的面积。
小明运用图形旋转的方法,将△DBF绕点D逆时针旋转90°,得到△DGE(如图2所示),一眼就看出这题的答案,请你写出阴影部分的面积;
活动二:如图3,在四边形ABCD中,AB=AD,∠BAD=∠C=90°,BC=5,CD=3,过点A作AE⊥BC,垂足为点E,求AE的长;
小明仍运用图形旋转的方法,将△ABE绕点A逆时针旋转90°,得到△ADG(如图4所示),则①四边形AECG是怎样的特殊四边形?②AE的长是____;
活动三:如图5,在四边形ABCD中,AB⊥AD,CD⊥AD,将BC按逆时针方向绕点B旋转90°得到线段BE,连接AE,若AB=2,DC=4,求△ABE的面积。

查看答案和解析>>

(1)阅读理解:
课外兴趣小组活动时,老师提出了如下问题: 如图,△ABC中,若AB=5,AC=3,求BC边上的中线AD的取值范围。
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使得DE=AD,再连结BE(或将△ACD绕点D逆时针旋转180°得到△EBD),把AB、AC、2AD集中在△ABE中,利用三角形的三边关系可得2<AE<8,则1<AD<4。
感悟:解题时,条件中若出现“中点”“中线”字样,可以考虑构造以中点为对称中心的中心对称图形,把分散的已知条件和所求证的结论集中到同一个三角形中。
(2)问题解决:
受到(1)的启发,请你证明下面命题:如图,在△ABC中,D是BC边上的中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连结EF。
①求证:BE+CF>EF;
②若∠A=90°,探索线段BE、CF、EF之间的等量关系,并加以证明。
(3)问题拓展:
如图,在四边形ABDC中,∠B+∠C=180°,DB=DC,∠BDC=120°,以D为顶点作一个60°角,角的两边分别交AB、AC于E、F两点,连结EF,探索线段BE、CF、EF之间的数量关系,并加以证明。

查看答案和解析>>


同步练习册答案