如图1共有 个三角形. 查看更多

 

题目列表(包括答案和解析)

如图,直线AC∥BD,连结AB,直线AB、BD、AC把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连结PA、PB构成∠PAC、∠APB、∠PBD三个角。(提示:有公共端点的两条重合的射线组成的角是0度角.)
(1)当动点P落在第①部分时,试说明∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)当动点P落在第③、④部分时,全面探究∠APB、∠PAC、∠PBD之间的数量关系,并画出相应的图形、写出相应的结论.请选择一种结论加以说明.

查看答案和解析>>

如图,直线AC∥BD,连结AB,直线AB、BD、AC把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连结PA、PB构成∠PAC、∠APB、∠PBD三个角。(提示:有公共端点的两条重合的射线组成的角是0度角.)

(1)当动点P落在第①部分时,试说明∠APB=∠PAC+∠PBD;

(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)

(3)当动点P落在第③、④部分时,全面探究∠APB、∠PAC、∠PBD之间的数量关系,并画出相应的图形、写出相应的结论.请选择一种结论加以说明.

 

查看答案和解析>>

如图,直线AC∥BD,连结AB,直线AB、BD、AC把平面分成①、②、③、④四个部分,规定:线上各点不属于任何部分.当动点P落在某个部分时,连结PA、PB构成∠PAC、∠APB、∠PBD三个角。(提示:有公共端点的两条重合的射线组成的角是0度角.)
(1)当动点P落在第①部分时,试说明∠APB=∠PAC+∠PBD;
(2)当动点P落在第②部分时,∠APB=∠PAC+∠PBD是否成立?(直接回答成立或不成立)
(3)当动点P落在第③、④部分时,全面探究∠APB、∠PAC、∠PBD之间的数量关系,并画出相应的图形、写出相应的结论.请选择一种结论加以说明.

查看答案和解析>>

如图:图中共有         个三角形。以∠C为内角的三角形有                  

 


查看答案和解析>>

已知一个三角形的两条边长分别是1cm和2cm,一个内角为40°。
(1)请你借助图1画出一个满足题设条件的三角形;
(2)你是否还能画出既满足题设条件,又与(1)中所画的三角形不全等的三角形?若能,请你在图1的右边用“尺规作图”作出所有这样的三角形;若不能,请说明理由。
(3)如果将题设条件改为“三角形的两条边长分别是3cm和4cm,一个内角为40°”,那么满足这一条件,且彼此不全等的三角形共有(    )个。

查看答案和解析>>


同步练习册答案