已知弧AB的度数为60.弧AB所在圆的半径为3. 则弧AB的弧长为 ,弧AB所在的扇形的面积是 -. 查看更多

 

题目列表(包括答案和解析)

已知在⊙O中,圆心O到弦AB的距离等于半径的一半,那么劣弧所对圆心角度数为(  )

查看答案和解析>>

已知在⊙O中,圆心O到弦AB的距离等于半径的一半,那么劣弧所对圆心角度数为


  1. A.
    45°
  2. B.
    60°
  3. C.
    90
  4. D.
    120°

查看答案和解析>>

 

1.观察发现

    如题27(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小. 做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P

  再如题27(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.

如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这

点就是所求的点P,故BP+PE的最小值为       

2.实践运用

如题27(c)图,已知⊙O的直径CD为4,弧AD所对圆心角的度数为60°,点B是弧AD的中点,请你在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.

3.拓展延伸

如题27(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留

作图痕迹,不必写出作法.

 

查看答案和解析>>

 

1.观察发现

    如题27(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小. 做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P

   再如题27(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小.

如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这

点就是所求的点P,故BP+PE的最小值为       

2.实践运用

如题27(c)图,已知⊙O的直径CD为4,弧AD所对圆心角的度数为60°,点B是弧AD的中点,请你在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.

3.拓展延伸

如题27(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留

作图痕迹,不必写出作法.

 

查看答案和解析>>

(1)观察发现如题(a)图,若点A,B在直线同侧,在直线上找一点P,使AP+BP的值最小. 做法如下:作点B关于直线的对称点,连接,与直线的交点就是所求的点P 再如题(b)图,在等边三角形ABC中,AB=2,点E是AB的中点,AD是高,在AD上找一点P,使BP+PE的值最小. 做法如下:作点B关于AD的对称点,恰好与点C重合,连接CE交AD于一点,则这点就是所求的点P,故BP+PE的最小值为       .  

(2)实践运用
如题(c)图,已知⊙O的直径CD为4,弧AD所对圆心角的度数为60°,点B是弧AD的中点,请你在直径CD上找一点P,使BP+AP的值最小,并求BP+AP的最小值.

(3)拓展延伸
如题(d)图,在四边形ABCD的对角线AC上找一点P,使∠APB=∠APD.保留
作图痕迹,不必写出作法. 

查看答案和解析>>


同步练习册答案