解:∠EDC= , (3) . 查看更多

 

题目列表(包括答案和解析)

阅读:D为△ABC中BC边上一点,连接AD,E为AD上一点, 如图(1),当D为BC边的中点时,有S△EBD=S△ECD,S△ABE= S△ACE==m。
解决问题:
在△ABC中,D是BC边的中点,P为AB边上的任意一点,CP交AD于点E 设△EDC的面积为S1,△APE的面积为S2
(1)如图(2),当=1时,的值为____;
(2)如图(3),=n时,的值为____;
(3)若S△ABC=24,S2=2,的值为______。

查看答案和解析>>

如图,已知AD是△ABC的中线,∠ADC=45°,把△ABC沿AD对折,点C落在点E的位置,连接BE,若BC=6cm。

(1)求BE的长;

(2)当AD=4cm时,求四边形BDAE的面积。

【解析】(1)由折叠可知:△ADC≌△ADE,∠EDC=2∠ADC=90°,ED=DC,又BD=DC,△BDE是等腰直角三角形,可求BE长;

(2)由(1)知,∠BED=45°,∠EDA=45°,∴四边形BDAE是梯形,已知上底AD=4,下底BE=3 2,为求梯形高,过D作DF⊥BE于点F,DF实际上就是等腰直角三角形BDE斜边上的高,可求长度.

 

查看答案和解析>>

已知:如图,在平面直角坐标系中,矩形OABC的边OA轴的正半轴上,OC轴的正半轴上,OA=2,OC=3。过原点O作∠AOC的平分线交AB于点D,连接DC,过点DDEDC,交OA于点E

(1)求过点EDC的抛物线的解析式;

(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与轴的正半轴交于点F,另一边与线段OC交于点G。如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;

(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQAB的交点P与点CG构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由。 

 

查看答案和解析>>

已知:如图,在平面直角坐标系中,矩形OABC的边OA轴的正半轴上,OC轴的正半轴上,OA=2,OC=3。过原点O作∠AOC的平分线交AB于点D,连接DC,过点DDEDC,交OA于点E

(1)求过点EDC的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与轴的正半轴交于点F,另一边与线段OC交于点G。如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;
(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQAB的交点P与点CG构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由。 

查看答案和解析>>

已知:如图,在平面直角坐标系中,矩形OABC的边OA轴的正半轴上,OC轴的正半轴上,OA=2,OC=3。过原点O作∠AOC的平分线交AB于点D,连接DC,过点DDEDC,交OA于点E

(1)求过点EDC的抛物线的解析式;
(2)将∠EDC绕点D按顺时针方向旋转后,角的一边与轴的正半轴交于点F,另一边与线段OC交于点G。如果DF与(1)中的抛物线交于另一点M,点M的横坐标为,那么EF=2GO是否成立?若成立,请给予证明;若不成立,请说明理由;
(3)对于(2)中的点G,在位于第一象限内的该抛物线上是否存在点Q,使得直线GQAB的交点P与点CG构成的△PCG是等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由。 

查看答案和解析>>


同步练习册答案