如图,直线分别交轴于A.C.点P是该直线与反比例函数在第一象限内的一个交点,PB⊥轴于B,且.设点R与点P在同一个反比例函数的图象上,且点R在直线PB的右侧,作RT⊥轴于T,当△BRT与△AOC相似时,求点R的坐标. 查看更多

 

题目列表(包括答案和解析)

如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.
(1)直接写出点E、F的坐标;
(2)设顶点为F的抛物线交y轴正半轴于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;
(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.
精英家教网

查看答案和解析>>

如图,已知抛物线y=px2-1与两坐标轴分别交于点A、B、C,点D坐标为(0,-2),△ABD为直角三角形,l为过点D且平精英家教网行于x轴的一条直线.
(1)求p的值;
(2)若Q为抛物线上一动点,试判断以Q为圆心,QO为半径的圆与直线l的位置关系,并说明理由;
(3)是否存在过点D的直线,使该直线被抛物线所截得的线段是点D到直线与抛物线两交点间得两条线段的比例中项?如果存在,请求出直线解析式;如果不存在,请说明理由.

查看答案和解析>>

如图,直线y=-x+3与x轴、y轴分别相交x轴于点B、交y轴于点C,经过B、C两点的抛物线y=ax2+bx+c与x轴的精英家教网另一交点为A,顶点为P,且对称轴是直线x=2.
(1)求A点的坐标;
(2)求该抛物线的函数表达式;
(3)连接AC.请问在x轴上是否存在点Q,使得以点P,B,Q为顶点的三角形与△ABC相似?若存在,请求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

如图,直线AB过点A(m,0),B(0,n)(m>0,n>0).反比例函数y=
m
x
的图象与AB交于C、D两点.P为双曲线y=
m
x
上任一点,过P作PQ⊥x轴于Q,PR⊥y轴于R.请分别精英家教网按(1)、(2)、(3)各自的要求解答问题.
(1)若m+n=10,n为何值时△AOB面积最大,最大值是多少?
(2)若S△AOC=S△COD=S△DOB,求n的值;
(3)在(2)的条件下,过O、D、C三点作抛物线,当该抛物线的对称轴为x=1时,矩形PROQ的面积是多少?

查看答案和解析>>

如图,在平面直角坐标系中,点A1是以原点O为圆心,半径为2的圆与过点(0,1)且平行于x轴的直线l1的一个交点;点A2是以原点O为圆心,半径为3的圆与过点(0,2)且平行于x轴的直线l2的一个交点;点A3是以原点O为圆心,半径为4的圆与过点(0,3)且平行于x轴的直线l3的一个交点;点A4是以原点O为圆心,半径为5的圆与过点(0,精英家教网4)且平行于x轴的直线l4的一个交点
(1)分别求出A1、A2、A3、A4四点的坐标;
(2)按照这样的规律进行下去,猜想、归纳点An的坐标为
 

(3)A1、A2、A3、A4四点在同一条直线上吗?如果在,求出该直线的解析式,如果不在,试判断这四个点所在的函数图象,并证明你的结论.

查看答案和解析>>


同步练习册答案