3.解析:设L1的解析式为y=k1x+b1. 把 分别代入. 得 解得 ∴L1的解析式为y=-x-3. 设L2的解析式为y=k2x+b2.把 分别代入. 得 解得 ∴L的解析式为y=-x+1. 解方程组 得 ∴L1与L2的交点坐标为(-.). 探究应用拓展性训练答案: 查看更多

 

题目列表(包括答案和解析)

已知直线l1:y=k1x+b1经过点(-1,6)和(1,2),它和x轴、y轴分别交于B和A;精英家教网直线l2:y=-
12
x-3,它和x轴、y轴的交点分别是D和C.
(1)求直线l1的解析式;
(2)求四边形ABCD的面积;
(3)设直线l1与l2交于点P,求△PBC的面积.

查看答案和解析>>

(2012•宽城区一模)如图,在平面直角坐标系中,有一矩形ABCD,已知A(1,3),B(3,3),D(1,-1).有两条抛物线l1、l2都经过A、B两点,且关于AB所在直线对称,其中抛物线l1经过原点,抛物线l2交y轴于点E.设P、Q两点分别在抛物线l1、l2上运动.
(1)求抛物线l1的解析式.
(2)直接写出抛物线l2的解析式.
(3)当四边形ADPQ为平行四边形时,求点P的横坐标.
(4)当点P运动到抛物线l1的顶点时,设直线PQ的解析式y=kx+b.
①若直线PQ经过点D,交线段AB于F,求△ADF的面积.
②若直线PQ分得矩形ABCD较小部分的面积大于0且不超过矩形ABCD面积的
1
5
,直接写出b的取值范围.
【参考公式:二次函数y=ax2+bx+c图象的顶点坐标为(-
b
2a
4ac-b2
4a
)】

查看答案和解析>>

如图,已知直线l1的解析式为y=3x+6,直线l1与x轴,y轴分别相交于A,B两点,直线l2经过B,C两点,点C的坐标为(8,0),又已知点P在x轴上从点A向点C移动,点Q在直线l2从点C精英家教网向点B移动.点P,Q同时出发,且移动的速度都为每秒1个单位长度,设移动时间为t秒(1<t<10).
(1)求直线l2的解析式;
(2)设△PCQ的面积为S,请求出S关于t的函数关系式;
(3)试探究:当t为何值时,△PCQ为等腰三角形?

查看答案和解析>>

精英家教网在直角坐标系中,直线L1的解析式为y=2x-1,直线L2过原点且L2与直线L1交于点P(-2,a).
(1)试求a的值;
(2)试问(-2,a)可以看作是怎样的二元一次方程组的解;
(3)设直线L1与x轴交于点A,你能求出△APO的面积吗?试试看;
(4)在直线L1上是否存在点M,使点M到x轴和y轴的距离相等?若存在,求出点M的坐标;不存在,说明理由.

查看答案和解析>>

平面直角坐标系内有两条直线l1、l2,直线l1的解析式为y=-
2
3
x+1,如果将坐标纸折叠,使直线l1与l2重合,此时点(-2,0)与点(0,2)也重合.
(1)求直线l2的解析式;
(2)设直线l1与l2相交于点M,问:是否存在这样的直线l:y=x+t,使得如果将坐标纸沿直线l折叠,点M恰好落在x轴上若存在,求出直线l的解析式;若不存在,请说明理由;
(3)设直线l2与x轴的交点为A,与y轴的交点为B,以点C(0,
2
3
)为圆心,CA的长为半径作圆,过点B任作一条直线(不与y轴重合),与⊙C相交于D、E两点(点D在点E的下方)
①在如图所示的直角坐标系中画出图形;
②设OD=x,△BOD的面积为S1,△BEC的面积为S2
S1
S2
=y
,求y与x之间的函数关系式精英家教网,并写出自变量x的取值范围.

查看答案和解析>>


同步练习册答案