21.探究:如图.已知AC=AB.AE=AD.∠EAB=∠DAC. 请写出题中所有的相等的量.并选择其中一个加以证明. 查看更多

 

题目列表(包括答案和解析)

知识回顾:
(1)如图1,在△ABC中,点D、E、F分别是边AB、BC、AC的中点,我们把△DEF称为△ABC的中点三角形.则S△DEF:S△ABC=
 

(2)如图2,在正方形ABCD中,点E、F、G、H分别是边AB、BC、CD、DA的中点,我们把四边形EFGH称为正方形ABCD的中点四边形,此时四边形EFGH的形状是
 
,S四边形EFGH:S四边形ABCD=
 

(3)实践探究:
如图3,在正五边形ABCDE中,若点F、G、H、M、N分别是边AB、BC、CD、DE、EA的中点,则中点五边形FGHMN的形状是
 
;若正五边形ABCDE的中心为点O,连接OE、ON,求S五边形FGHMN:S五边形ABCDE的值.
精英家教网
(4)拓展归纳:
在正n边形A1A2 …An中,若点B1、B2 …Bn分别是边A1A2、A2A3、…、AnA1的中点,则中点n边形B1B2 …Bn的面积与正n边形A1A2 …An的面积之比为Sn边形B1B2BnSn边形A1A2An=
 

查看答案和解析>>

问题情境:如图1,在直角三角形ABC中,∠BAC=90°,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);
特例探究:如图2,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB=AC,CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;
归纳证明:如图3,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC.求证:△ABE≌△CAF;
拓展应用:如图4,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为
5
5

查看答案和解析>>

小明数学成绩优秀,他平时善于总结,并把总结出的结果灵活运用到做题中是他成功的经验之一,例如,总结出“依次连接任意一个四边形各边中点所得四边形(即原四边形的中点四边形)一定是平行四边形”后,他想到曾经做过的这样一道题:如图1,点P是线段AB的中点,分别以AP和BP为边在线段AB的同侧作等边三角形APC和等边三角形BPD,连接AD和BC,他想到了四边形ABDC的中点四边形一定是菱形.于是,他又进一步探究:
如图2,若P是线段AB上任一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,设点E,F,G,H分别是AC,AB,BD,CD的中点,顺次连接E,F,G,H.请你接着往下解决三个问题:
(1)猜想四边形ABCD的中点四边形EFGH的形状,直接回答
 
,不必说明理由;
(2)当点P在线段AB的上方时,如图3,在△APB的外部作△APC和△BPD,其它条件不变,(1)中结论还成立吗?说明理由;
(3)如果(2)中,∠APC=∠BPD=90°,其它条件不变,先补全图4,再判断四边形EFGH的形状,并说明理由.
精英家教网

查看答案和解析>>

(本题满分10分)

(一)探究:如图,AB的坐标为(2,0),(0,1)若将线段平移至,则=     =     

(二)归纳:AB的坐标为(a,0),(0,b)若将线段平移至,则三者关系为       

三者间关系为      

(三)应用:如图,抛物线yax2+bxc对称轴为直线x=1,交x轴于A、B两点,且点B,交y轴于C点。

⑴求抛物线的函数关系式;

⑵将△AOC沿x轴翻折得到△AOC′,问:是否存在这样的点P,以P为旋转中心,将△AOC′ 旋转180°,使得A、C′的对称点EG恰好在抛物线上?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由.

 

查看答案和解析>>

(本题满分14分)

1.(1) 如图所示的网格坐标系中,顶点在格点上的矩形ABCD被分割成四块全等的小矩形①、②、③、④,并经过一次或二次变换拼成正方形A1B1C1D1.试写出小矩形从①→⑤、③→⑦一种变换过程;

2.(2) 对任意一个矩形按(1)的方式实施分割、变换后拼成正方形.试探究矩形ABCD的周长与面积分别与正方形A1B1C1D1的周长与面积的大小关系?并用代数方法验证你的结论.

 

查看答案和解析>>


同步练习册答案