探索下列问题: (1)在图23-1给出的四个正方形中.各画出一 条直线(依次是:水平方向的直线.竖直方向的直线.与水平方向成45°角的直线和任意的直线).将每个正方形都分割成面积相等的两部分, (2)一条竖直方向的直线m以及任意的直线n. 在由左向右平移的过程中.将正六边形分成 左右两部分.其面积分别记为S1和S2. ①请你在图23-2中相应图形下方的横线上 分别填写S1与S2的数量关系式(用“< .“= .“> 连接), ②请你在图23-3中分别画出反映S1与S2三种大小关系的直线n.并在相应图形下 方的横线上分别填写S1与S2的数量关系 式(用“< .“= .“> 连接). (3)是否存在一条直线.将一个任意的平面图 形分割成面积相等的两部分. 请简略说出理由. 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.

(1)如果AB=AC,∠BAC=90º.

解答下列问题:

①当点D在线段BC上时(与点B不重合),如图甲,线段CF、BD之间的位置关系为       ,数量关系为      

②当点D在线段BC的延长线上时,如图乙,①中的结论是否仍然成立,为什么?(要求写出证明过程)

(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.且∠BCA=45°时,如图丙请你判断线段CF、BD之间的位置关系,并说明理由(要求写出证明过程).

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(本小题满分12分)

某县有着丰富的海产品资源. 某海产品加工企业已收购某种海产品60吨, 根据市场信息, 如果对该海产品进行粗加工, 每天可加工8吨, 每吨可获利1000元;如果进行精加工,每天可加工2吨, 每吨可获利5000元. 由于受设备条件的限制,两种加工方式不能同时进行.

1.(1)设精加工的吨数为吨, 则粗加工的吨数为            吨,加工这批海产品需要                   天, 可获利                          元(用含的代数式表示);

2.(2)为了保鲜的需要, 该企业必须在两周(14天)内将这批海产品全部加工完毕,精加工的吨数在什么范围内时, 该企业加工这批海产品的获利不低于120000元?

 

查看答案和解析>>

(本小题满分12分)你还记得图形的旋转吗?如图,P是正方形ABCD内一点,

PA=a,PB=2a,PC=3a.将△APB绕点B按顺时针方向旋转,使AB与BC重合,得△CBP.

⑴ 求证:△PBP是等腰直角三角形;

⑵ 猜想△PCP的形状,并说明理由.

 

查看答案和解析>>

(本小题满分12分)
如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90º.
解答下列问题:
①当点D在线段BC上时(与点B不重合),如图甲,线段CF、BD之间的位置关系为     ,数量关系为     
②当点D在线段BC的延长线上时,如图乙,①中的结论是否仍然成立,为什么?(要求写出证明过程)
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.且∠BCA=45°时,如图丙请你判断线段CF、BD之间的位置关系,并说明理由(要求写出证明过程).

查看答案和解析>>

(本小题满分12分)
某县有着丰富的海产品资源. 某海产品加工企业已收购某种海产品60吨, 根据市场信息, 如果对该海产品进行粗加工, 每天可加工8吨, 每吨可获利1000元;如果进行精加工, 每天可加工2吨, 每吨可获利5000元. 由于受设备条件的限制,两种加工方式不能同时进行.
【小题1】(1)设精加工的吨数为吨, 则粗加工的吨数为            吨,加工这批海产品需要                   天, 可获利                          元(用含的代数式表示);
【小题2】(2)为了保鲜的需要, 该企业必须在两周(14天)内将这批海产品全部加工完毕,精加工的吨数在什么范围内时, 该企业加工这批海产品的获利不低于120000元?

查看答案和解析>>


同步练习册答案