可以判定西ABC∽的条件是( ) A. B. C. D.以上都不对 查看更多

 

题目列表(包括答案和解析)

阅读材料并解答问题
如图①,以Rt△ABC的直角边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,可以得出结论△ABC的面积与△AEG的面积相等.
(1)在图①中的△ABC的直角边AB上任取一点H,连接CH,以BH、HC为边分别向外作正方形HBDE和正方形HCFG,连接EG,得到图②,则△HBC的面积与△HEG的面积的大小关系为
 

(2)如图③,若图形总面积是a,其中五个正方形的面积和是b,则图中阴影部分的面积是
 

(3)如图④,点A、B、C、D、E都在同一直线上,四边形X、Y、Z都是正方形,若图形总面积是m,正方形Y的面积是n,则图中阴影部分的面积是
 

精英家教网

查看答案和解析>>

23、观察探索题:
如图,已知三角形ABC,延长BC到D,过点C作CE∥AB.由于AB∥CE,所以可得到∠B=∠3和∠A=∠2.又因为∠1+∠2+∠3组成一个平角为180°,通过等量代换可以得到三角形ABC的三个内角的和为180°,即∠A+∠B+∠ACB=180°.
试根据以上叙述,写出已知、求证及说明∠A+∠B+∠ACB=180°的过程.
已知:延长三角形ABC的边BC到D,过C作CE∥AB.
求证:∠A+∠B+∠ACB=180°
证明:

查看答案和解析>>

【问题】如图甲,在等边三角形ABC内有一点P,且PA=2,PB=
3
,PC=1,求∠BPC度数的大小和等边三角形ABC的边长.
【探究】解题思路是:将△BPC绕点B逆时针旋转60°,如图乙所示,连接PP′.
(1)△P′PB是
 
三角形,△PP′A是
 
三角形,∠BPC=
 
°;
(2)利用△BPC可以求出△ABC的边长为
 

【拓展应用】
如图丙,在正方形ABCD内有一点P,且PA=
5
,BP=
2
,PC=1;
(3)求∠BPC度数的大小;
(4)求正方形ABCD的边长.
精英家教网

查看答案和解析>>

阅读材料并解答问题
如图①,以Rt△ABC的直角边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连结EG,可以得出结论△ABC的面积与△AEG的面积相等.
(1)在图①中的△ABC的直角边AB上任取一点H,连结CH,以BH、HC为边分别向外作正方形HBDE和正方形HCFG,连结EG,得到图②,则△HBC的面积与△HEG的面积的大小关系为   .
(2)如图③,若图形总面积是a,其中五个正方形的面积和是b,则图中阴影部分的面积是   .
(3)如图④,点A、B、C、D、E都在同一直线上,四边形X、Y、Z都是正方形,若图形总面积是m,正方形Y的面积是n,则图中阴影部分的面积是   .
  
图①             图②                       图③                      图④

查看答案和解析>>

阅读材料并解答问题

    如图①,以Rt△ABC的直角边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连结EG,可以得出结论△ABC的面积与△AEG的面积相等.

(1)在图①中的△ABC的直角边AB上任取一点H,连结CH,以BH、HC为边分别向外作正方形HBDE和正方形HCFG,连结EG,得到图②,则△HBC的面积与△HEG的面积的大小关系为    .

(2)如图③,若图形总面积是a,其中五个正方形的面积和是b,则图中阴影部分的面积是    .

(3)如图④,点A、B、C、D、E都在同一直线上,四边形X、Y、Z都是正方形,若图形总面积是m,正方形Y的面积是n,则图中阴影部分的面积是    .

  

    图①              图②                        图③                       图④

 

 

 

查看答案和解析>>


同步练习册答案