题目列表(包括答案和解析)
某校研究性学习小组在研究相似图形时,发现相似三角形的定义、判定及其性质,可以拓展到扇形的相似中去.例如,可以定义:“圆心角相等且半径和弧长对应成比例的两个扇形叫做相似扇形”;相似扇形有性质:弧长比等于半径比、面积比等于半径比的平方…….请你协助他们探索这个问题.
(1)写出判定扇形相似的一种方法:若________,则两个扇形相似;
(2)有两个圆心角相等的扇形,其中一个半径为a、弧长为m,另一个半径为2a,则它的弧长为________;
(3)如图是一完全打开的纸扇,外侧两竹条AB和AC的夹角为120°,AB为30厘米,现要做一个和它形状相同、面积是它一半的纸扇(如图),求新做纸扇(扇形)的圆心角和半径.
| 底边 |
| 腰 |
| BC |
| AB |
| 1 |
| 2 |
| ||
| 2 |
| 3 |
| 5 |
| 1 |
| 2 |
| 2 |
| 2 |
| 3 |
| 3 |
| 3 |
| 5 |
2-2
|
2-2
|
学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA ,这时sadA=
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的. 根据上述关于角的正对定义,解决下列问题:![]()
【小题1】sad
的值为( ▲ )
| A. | B.1 | C. | D.2 |
| A. | B. | C. |
| D. |
学习过三角函数,我们知道在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA ,这时sadA=
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的. 根据上述关于角的正对定义,解决下列问题:
![]()
1.sad
的值为( ▲ )A.
B. 1 C.
D.
2
2.对于
,∠A的正对值sadA的取值范围是(
▲ )
![]()
A.
B.
C.
D. ![]()
3.已知,如图,在△ABC中,∠ACB为直角,
,AB=25试求sadA的值
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com