解:,且x<0,y>0则 S△ABO=·│BO│·│BA│=·(-x)·y=. ∴xy=-3. 又∵y=,即xy=k,∴k=-3. ∴所求的两个函数的解析式分别为y=-,y=-x+2. (2)由y=-x+2,令y=0,得x=2. ∴直线y=-x+2与x轴的交点D的坐标为(2,0). 再由 ∴交点A为. ∴S△AOC=S△ODA+S△ODC=. 查看更多

 

题目列表(包括答案和解析)

解答题

如图,P是抛物线y=x2上位于第一象限内的一动点,A点坐标是(3,0).

(1)设P点坐标是(x,y),求△POA的面积S;

(2)S是y的什么函数?

(3)S是x的什么函数?

(4)当S=6时,求P点坐标.

查看答案和解析>>

(2012•柳州)如图,在△ABC中,AB=2,AC=BC=
5

(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出A、B、C三点的坐标;
(2)求过A、B、C三点且以C为顶点的抛物线的解析式;
(3)若D为抛物线上的一动点,当D点坐标为何值时,S△ABD=
1
2
S△ABC
(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以A′B′为直径的圆上(解答过程如果有需要时,请参看阅读材料).
 
附:阅读材料
一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.
当x1=1时,即y2=1,∴y1=1,y2=-1.
当x2=3,即y2=3,∴y3=
3
,y4=-
3

所以,原方程的解是y1=1,y2=-1,y3=
3
,y4=-
3

再如x2-2=4
x2-2
,可设y=
x2-2
,用同样的方法也可求解.

查看答案和解析>>

精英家教网阅读理解
九年级一班数学学习兴趣小组在解决下列问题中,发现该类问题不仅可以应用“三角形相似”知识解决问题,还可以“建立直角坐标系、应用一次函数”解决问题.
请先阅读下列“建立直角坐标系、应用一次函数”解决问题的方法,然后再应用此方法解决后续问题.
问题:如图(1),直立在点D处的标杆CD长3m,站立在点F处的观察者从点E处看到标杆顶C、旗杆顶A在一条直线上.已知BD=15m,FD=2m,EF=1.6m,求旗杆高AB.
解:建立如图(2)所示的直角坐标系,则线段AE可看作一个一次函数的图象.
由题意可得各点坐标为:点E(0,1.6),C(2,3),B(17,0),且所求的高度就为点A的纵坐标.
设直线AE的函数关系式为y=kx+b.
把E(0,1.6),C(2,3)代入得
b=1.6
2k+b=3.
解得
k=0.7
b=1.6.
精英家教网
∴y=0.7x+1.6.
∴当x=17时,y=0.7×17+1.6=13.5,即AB=13.5(m).
解决问题
请应用上述方法解决下列问题:
如图(3),河对岸有一路灯杆AB,在灯光下,小明在点D处测得自己的影长DF=3m,BD=9m,沿BD方向到达点F处再测得自己的影长FG=4m.如果小明的身高为1.6m,求路灯杆AB的高度.

查看答案和解析>>

如图,在△ABC中,AB=2,AC=BC= 5 .
(1)以AB所在的直线为x轴,AB的垂直平分线为y轴,建立直角坐标系如图,请你分别写出A、B、C三点的坐标;
(2)求过A、B、C三点且以C为顶点的抛物线的解析式;
(3)若D为抛物线上的一动点,当D点坐标为何值时,S△ABD=S△ABC
(4)如果将(2)中的抛物线向右平移,且与x轴交于点A′B′,与y轴交于点C′,当平移多少个单位时,点C′同时在以A′B′为直径的圆上(解答过程如果有需要时,请参看阅读材料).
附:阅读材料
一元二次方程常用的解法有配方法、公式法和因式分解法,对于一些特殊方程可以通过换元法转化为一元二次方程求解.如解方程:y4-4y2+3=0.
解:令y2=x(x≥0),则原方程变为x2-4x+3=0,解得x1=1,x2=3.
当x1=1时,即y2=1,∴y1=1,y2=-1.
当x2=3,即y2=3,∴y3= ,y4=- .所以,原方程的解是y1=1,y2=-1,y3=
y4=-  ,再如 ,可设 ,用同样的方法也可求解.

查看答案和解析>>

解:(1)OA=1,OC=2

A点坐标为(0,1),C点坐标为(2,0)

设直线AC的解析式为y=kx+b

解得

直线AC的解析式为··················· 2分

(2)

(正确一个得2分)························· 8分

(3)如图,设

点作F

由折叠知

或2··········· 10分

查看答案和解析>>


同步练习册答案