如图.在直角梯形ABCD中.将△ABC沿对角线BD翻折.使点A落到CD的中点E处.则△BCD是 A.等腰三角形.B.等边三角形.C.等腰直角三角形.D.钝角三角形. 查看更多

 

题目列表(包括答案和解析)

如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,将直角梯形ABCD放置在平面直角坐标系中.已知A(-2,0)、B(4,0)、D(0,3),反比例函数y=
kx
(x>0)的图象经过点C.
(1)求反比例函数的解析式.
(2)将直角梯形ABCD绕点B沿顺时针方向旋转90°,点A、C、D的对应点分别为点A′、C′、D′,C′D′与反比例函数的图象交于点E.
①求点D在旋转过程中经过的路径长;
②连接CE、OC、OE,求△OCE的面积.

查看答案和解析>>

如图,在直角梯形ABCD中,AB∥CD,∠ABC=90°,将直角梯形ABCD放置在平面直角坐标系中.已知A(-2,0)、B(4,0)、D(0,3),反比例函数y=数学公式(x>0)的图象经过点C.
(1)求反比例函数的解析式.
(2)将直角梯形ABCD绕点B沿顺时针方向旋转90°,点A、C、D的对应点分别为点A′、C′、D′,C′D′与反比例函数的图象交于点E.
①求点D在旋转过程中经过的路径长;
②连接CE、OC、OE,求△OCE的面积.

查看答案和解析>>

已知:如图,在直角梯形ABCD中,AD∥BC,∠B=90°,CD=8,BC=12,∠ACB=30°,E为BC边上一点,以BE为边作正三角形BEF,使正三角形BEF和梯形ABCD在BC的同侧.
(l)当正三角形BEF的顶点F恰好落在对角线AC上时,求BE的长;
(2)将(1)问中的正三角形BEF沿BC向右平移,记平移中的正三角形BEF为正三角形B′E′F′,当点E与点C重合时停止平移.设平移的距离为x,正三角形B′E′F′的边B′E′和E′F′分别与AC交于点M和点N,连接,DM,DN:
①设正三角形B′E′F′与△ABC重叠部分的面积为S,求S与x之间的函数关系式,并写出自变量x的取值范围,求当DN取得最小值时,求出S的值;
②是否存在这样的x,使三角形DMN是直角三角形?若存在,求出x的值;若不存在,请说明理由. 

查看答案和解析>>

如图,在平面直角坐标系中,已知等腰梯形ABCD,AB=AD=DC=2,∠ABC=60°,等腰梯形ABCD称为基本图形,记为图①,现将图①沿AD翻折后平移得到图②;然后将图②以A1为旋转中心,顺时针旋转60°,再向上精英家教网平移8个单位,得到图③;以y轴为对称轴作图③的对称图形,得到等腰梯形A3B3C3D3,即为图④.
(1)画出图④的图形,写出点A、A2、A3的坐标;
(2)将图②、图③、图④通过适当的平移,与图①拼到一起,组成一个新的等腰梯形A4B4C4D4
①在拼成新等腰梯形的过程中,图④经过了怎样的平移?
②对于等腰梯形A4B4C4D4,能否将其中的一个小等腰梯形经过一次图形变换,变成一个平行四边形?如果能,请说明变换过程;如果不能请说明理由.

查看答案和解析>>

如图,在平面直角坐标系中,已知等腰梯形ABCD,AB=AD=DC=2,∠ABC=60°,等腰梯形ABCD称为基本图形,记为图①,现将图①沿AD翻折后平移得到图②;然后将图②以A1为旋转中心,顺时针旋转60°,再向上平移8个单位,得到图③;以y轴为对称轴作图③的对称图形,得到等腰梯形A3B3C3D3,即为图④.
(1)画出图④的图形,写出点A、A2、A3的坐标;
(2)将图②、图③、图④通过适当的平移,与图①拼到一起,组成一个新的等腰梯形A4B4C4D4
①在拼成新等腰梯形的过程中,图④经过了怎样的平移?
②对于等腰梯形A4B4C4D4,能否将其中的一个小等腰梯形经过一次图形变换,变成一个平行四边形?如果能,请说明变换过程;如果不能请说明理由.

查看答案和解析>>


同步练习册答案