39.一次函数的图象.在-2≤x≤1的一段都在x轴上方.则的取值 范围是 查看更多

 

题目列表(包括答案和解析)

综合题

已知二次函数y=x2+bx+c的图象经过点A(-3,6),并与x轴交于点B(-1,0)和点C,顶点为P.

(1)求这个二次函数的解析式,并在直角坐标系中画出该二次函数的图象;

(2)设D为线段OC上的一点,满足∠DPC=∠BAC,求点D的坐标;

(3)在x轴上是否存在一点M,使以M为圆心的圆与AC、PC所在的直线及y轴都相切?如果存在,请求出点M的坐标;若不存在.请说明理由.

查看答案和解析>>

新星电子科技公司积极应对2008年世界金融危机,及时调整投资方向,瞄准光伏产业,建成了太阳能光伏电池生产线.由于新产品开发初期成本高,且市场占有率不高等因素的影响,产品投产上市一年来,公司经历了由初期的亏损到后来逐步盈利的过程(公司对经营的盈亏情况每月最后一天结算1次).公司累积获得的利润y(万元)与销售时间第x(月)之间的函数关系式(即前x个月的利润总和yx之间的关系)对应的点都在如图所示的图象上.该图象从左至右,依次是线段OA、曲线AB和曲线BC,其中曲线AB为抛物线的一部分,点A为该抛物线的顶点,曲线BC为另一抛物线y=-5x2+205x-1230的一部分,且点ABC的横坐标分别为4,10,12

(1)求该公司累积获得的利润y(万元)与时间第x(月)之间的函数关系式;

(2)直接写出第x个月所获得S(万元)与时间x(月)之间的函数关系式(不需要写出计算过程);

(3)前12个月中,第几个月该公司所获得的利润最多?最多利润是多少万元?

查看答案和解析>>

如图,二次函数y=-ax2ax+a(a>0)的图象与y轴交于点A,与x轴交于点B、C,过A点作x轴的平行线交抛物线于另一点D,线段OC上有一动点P,连结DP,作PE⊥DP,交y轴于点E.

(1)当a变化时,线段AD的长是否变化?若变化,请说明理由;若不变,请求出AD的长.

(2)若a为定值,设OP=x,OE=y,试求y关于x的函数关系式.

(3)若在线段OC上存在不同的两点P1、P2使相应的点E1、E2都与点A重合,试求a的取值范围.

查看答案和解析>>

如图,在平面直角坐标系xOy中,我把由两条射线AEBF和以AB为直径的半圆所组成的图形叫作图形C(注:不含AB线段).已知A(10)B(10)AEBF,且半圆与y轴的交点D在射线AE的反向延长线上.

(1)求两条射线AEBF所在直线的距离;

(2)当一次函数yxb的图象与图形C恰好只有一个公共点时,写出b的取值范围;当一次函数yxb的图象与图形C恰好只有两个公共点时,写出b的取值范围;

(3)已知AMPQ(四个顶点AMPQ按顺时针方向排列)的各顶点都在图形C上,且不都在两条射线上,求点M的横坐标x的取值范围.

查看答案和解析>>

企业的污水处理有两种方式,一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:

7至12月,该企业自身处理的污水量y2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式为y2=ax2+c(a≠0).其图象如图所示.1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式:z1x,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:z2x-x2;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.

(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;

(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用;

(3)今年以来,由于自建污水处理设备的全面运行,该企业决定扩大产能并将所有污水全部自身处理,估计扩大产能后今年每月的污水量都将在去年每月的基础上增加a%,同时每吨污水处理的费用将在去年12月份的基础上增加(a-30)%,为鼓励节能降耗,减轻企业负担,财政对企业处理污水的费用进行50%的补助.若该企业每月的污水处理费用为18000元,请计算出a的整数值.(参考数据:≈15.2,≈20.5,≈28.4)

查看答案和解析>>


同步练习册答案