3. 解析:设另一条直角边为x.则斜边为(x+1)利用勾股定理可得方程.可以求出x.然后再求它的周长. 答案:C. 查看更多

 

题目列表(包括答案和解析)

(2012•普陀区二模)已知,∠ACB=90°,CD是∠ACB的平分线,点P在CD上,CP=
2
.将三角板的直角顶点放置在点P处,绕着点P旋转,三角板的一条直角边与射线CB交于点E,另一条直角边与直线CA、直线CB分别交于点F、点G.
(1)如图,当点F在射线CA上时,
①求证:PF=PE.
②设CF=x,EG=y,求y与x的函数解析式并写出函数的定义域.
(2)连接EF,当△CEF与△EGP相似时,求EG的长.

查看答案和解析>>

已知,∠ACB=90°,CD是∠ACB的平分线,点P在CD上,.将三角板的直角顶点放置在点P处,绕着点P旋转,三角板的一条直角边与射线CB交于点E,另一条直角边与直线CA、直线CB分别交于点F、点G.
(1)如图,当点F在射线CA上时,
①求证:PF=PE.
②设CF=x,EG=y,求y与x的函数解析式并写出函数的定义域.
(2)连接EF,当△CEF与△EGP相似时,求EG的长.

查看答案和解析>>

已知,的平分线,点上,.将三角板的直角顶点放置在点处,绕着点旋转,三角板的一条直角边与射线交于点,另一条直角边与直线、直线分别交于点、点

(1)如图,当点在射线上时,

①求证:

②设,求的函数解析式并写出函数的定义域;

(2)连结,当△与△似时,求的长.

 

查看答案和解析>>

已知,∠ACB=90°,CD是∠ACB的平分线,点P在CD上,.将三角板的直角顶点放置在点P处,绕着点P旋转,三角板的一条直角边与射线CB交于点E,另一条直角边与直线CA、直线CB分别交于点F、点G.
(1)如图,当点F在射线CA上时,
①求证:PF=PE.
②设CF=x,EG=y,求y与x的函数解析式并写出函数的定义域.
(2)连接EF,当△CEF与△EGP相似时,求EG的长.

查看答案和解析>>

已知,的平分线,点上,.将三角板的直角顶点放置在点处,绕着点旋转,三角板的一条直角边与射线交于点,另一条直角边与直线、直线分别交于点、点

(1)如图,当点在射线上时,
①求证:
②设,求的函数解析式并写出函数的定义域;
(2)连结,当△与△似时,求的长.

查看答案和解析>>


同步练习册答案