课后设计一个绕一点旋转60°能与自身重合的图形.并配上一句解说词. 查看更多

 

题目列表(包括答案和解析)

课题:两个重叠的正多形,其中的一个绕某一顶点旋转所形成的有关问题.
实验与论证:
设旋转角∠A1A0B1=α(α<∠A1A0A2),θ3、θ4、θ5、θ6所表示的角如图所示.
精英家教网
(1)用含α的式子表示解的度数:θ3=
 
,θ4=
 
,θ5=
 

(2)图1-图4中,连接A0H时,在不添加其他辅助线的情况下,是否存在与直线A0H垂直且被它平分的线段?若存在,请选择其中的一个图给出证明;若不存在,请说明理由;
归纳与猜想:
设正n边形A0A1A2…An-1与正n边形A0B1B2…Bn-1重合(其中,A1与B1重合),现将正边形A0B1B2…Bn-1绕顶点A0逆时针旋转α(0°<α<
180n
°);
(3)设θn与上述“θ3、θ4、…”的意义一样,请直接写出θn的度数;
(4)试猜想在正n边形的情形下,是否存在与直线A0H垂直且被它平分的线段?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.

查看答案和解析>>

已知2个正多边形A和3个正多边形B可绕一点周围镶嵌(密铺),A的一个内角的度数是B的一个内角的度数的
32

(1)试分别确定A、B是什么正多边形?
(2)画出这5个正多边形在平面镶嵌(密铺)的图形(画一种即可);
(3)判断你所画图形的对称性(直接写出结果).

查看答案和解析>>

坐落在山东省汶上县宝相寺内的太子灵踪塔始建于北宋(公元1112年),为砖彻八角形十三层楼阁式建筑.数学活动小组开展课外实践活动,在一个阳光明媚的上午,他们去测量太子灵踪塔的高度,携带的测量工具有:测角仪、皮尺、小镜子.
(1)小华利用测角仪和皮尺测量塔高.图1为小华测量塔高的示意图.她先在塔前的平地上选择一点A,用测角仪测出看塔顶(M)的仰角α=35°,在A点和塔之间选择一点B,测出看塔顶(M)的仰角β=45°,然后用皮尺量出A、B两点的距离为18.6m,自身的高度为1.6m.请你利用上述数据帮助小华计算出塔的高度;(tan35°≈0.7,结果保留整数)
(2)如果你是活动小组的一员,正准备测量塔高,而此时塔影NP的长为am(如图2),你能否利用这一数据设计一个测量方案如果能,请回答下列问题:
①在你设计的测量方案中,选用的测量工具是:
 

②要计算出塔的高,你还需要测量哪些数据
 
精英家教网

查看答案和解析>>

课题:两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题.
实验与论证
设旋转角∠A1A0B1=α(α<∠A1A0B1),θ1,θ2,θ3,θ4,θ5,θ6所表示的角如图所示.

(1)用含α的式子表示:θ3=
60°-α
60°-α
,θ4=
α
α
,θ5=
36°-α
36°-α
;θ6=
α
α

(2)图1中,连接A0H时,在不添加其他辅助线的情况下,直线A0H是否垂直平分线段A2B1
答:
;请说明你的理由;
归纳与猜想
设正n边形A0A1A2…An-1与正n边形A0B1B2…Bn-1重合(其中,A1与B1重合),现将正n边形A0B1B2…Bn-1绕顶点A0逆时针旋转α(0°<α<
180°n
).
(3)设θn与上述“θ3,θ4,…”的意义一样,请直接写出θn的度数.

查看答案和解析>>

两个重叠的正多边形,其中的一个绕某一个顶点旋转所形成的有关问题.
实验与论证
设旋转角∠A1AOB1=α(α<∠A1AOA2),θ3,θ4,θ5,θ6所表示的角如图所示.
精英家教网
(1)用含α的式子表示角的度数:θ3=
 
,θ4=
 
,θ5=
 

(2)图2中,连接AoH时,在不添加其他辅助线的情况下,是否存在与直线AoH垂直且被它平分的线段?若存在,请给出证明;若不存在,请说明理由;
归纳与猜想
设正n边形AOA1A2…An-1与正n边形AOB1B2…Bn-1重合(其中A1与B1重合),现将正n边形AOB1B2…Bn-1绕顶点Ao逆时针旋转α(0°<α<
180°n
)

(3)试猜想在正n边形的情况下,是否存在以A1为端点的线段被直线AoH垂直且平分?若存在,请将这条线段用相应的顶点字母表示出来(不要求证明);若不存在,请说明理由.
(4)设θn与上述“θ3,θ4,…”的意义一样,请直接写出θn的度数.

查看答案和解析>>


同步练习册答案