22.如图17.中.∠B=∠C.D.E.F分别在..上.且. . 求证:. 证明:∵∠DEC=∠B+∠BDE. 又∵∠DEF=∠B. ∴∠ =∠ . 在△EBD与△FCE中. ∠ =∠ . = . ∠B=∠C. ∴( ). ∴ED=EF( ). 查看更多

 

题目列表(包括答案和解析)

如图,在△ABC中,AD、AE分别是高与角平分线,∠B=33°,∠C=67°,则∠EAD等于

[  ]

A.

B.17°

C.27°

D.34°

查看答案和解析>>

如图,在△ABC中,分别以点A和点B为圆心,大于的AB的长为半径画孤,两弧相交于点M,N,作直线MN,交BC于点D,连接AD.若△ADC的周长为10,AB=7,则△ABC的周长为

[  ]

A.7

B.14

C.17

D.20

查看答案和解析>>

一透明的敞口正方体容器ABCD -A′B′C′D′ 装有一些 液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE = α,如图17-1所示).

探究 如图17-1,液面刚好过棱CD,并与棱BB′ 交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图17-2所示.解决问题:

 


(1)CQBE的位置关系是___________,BQ的长是____________dm;

(2)求液体的体积;(参考算法:直棱柱体积V液 = 底面积SBCQ×高AB

(3)求α的度数.(注:sin49°=cos41°=,tan37°=)

 


拓展 在图17-1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图17-3或图17-4是其正面示意图.若液面与棱C′CCB交于点P,设PC = xBQ = y.分别就图17-3和图17-4求yx的函数关系式,并写出相应的α的范围.

延伸 在图17-4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图17-5,隔板高NM = 1 dm,BM = CMNMBC.继续向右缓慢旋转,当α = 60°时,通过计算,判断溢出容器的液体能否达到4 dm3.

查看答案和解析>>

一透明的敞口正方体容器ABCD -A′B′C′D′ 装有一些液体,棱AB始终在水平桌面上,容器底部的倾斜角为α(∠CBE = α,如图17-1所示).
探究 如图1,液面刚好过棱CD,并与棱BB′ 交于点Q,此时液体的形状为直三棱柱,其三视图及尺寸如图2所示.解决问题:

(1)CQ与BE的位置关系是___  ___,BQ的长是____  ___dm;
(2)求液体的体积;(参考算法:直棱柱体积V液 = 底面积SBCQ×高AB)
(3)求α的度数.(注:sin49°=cos41°=,tan37°=)
拓展 在图17-1的基础上,以棱AB为轴将容器向左或向右旋转,但不能使液体溢出,图17-3或图17-4是其正面示意图.若液面与棱C′C或CB交于点P,设PC = x,BQ = y.分别就图17-3和图17-4求y与x的函数关系式,并写出相应的α的范围.
延伸 在图17-4的基础上,于容器底部正中间位置,嵌入一平行于侧面的长方形隔板(厚度忽略不计),得到图17-5,隔板高NM =" 1" dm,BM = CM,NM⊥BC.继续向右缓慢旋转,当α = 60°时,通过计算,判断溢出容器的液体能否达到4 dm3.

查看答案和解析>>


同步练习册答案