如图1,下列推论及所注理由正确的是( ) A.∵∠1=∠B,∴DE∥BC(两直线平行,同位角相等) B.∵∠2=∠C,∴DE∥BC(两直线平行,同位角相等) C.∵∠2+∠3+∠B=180°,∴DE∥BC(同旁内角互补,两直线平行) D.∵∠4=∠1,∴DE∥BC (3) 查看更多

 

题目列表(包括答案和解析)

(2013•兰州)在兰州市开展的“体育、艺术2+1”活动中,某校根据实际情况,决定主要开设A:乒乓球,B:篮球,C:跑步,D:跳绳这四种运动项目.为了解学生喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如图甲、乙所示的条形统计图和扇形统计图.请你结合图中的信息解答下列问题:

(1)样本中喜欢B项目的人数百分比是
20%
20%
,其所在扇形统计图中的圆心角的度数是
72°
72°

(2)把条形统计图补充完整;
(3)已知该校有1000人,根据样本估计全校喜欢乒乓球的人数是多少?

查看答案和解析>>

(2013•历城区三模)如图(1)所示,E为矩形ABCD的边AD上一点,动点P、Q同时从点B出发,点P沿折线BE-ED-DC运动到点C时停止,点Q沿BC运动到点C时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分).则下列结论错误的是(  )

查看答案和解析>>

8、在方格纸中,图(1)中的图形N经过旋转平移后的位置如图(2)所示,那么下列说法正确的是(  )

查看答案和解析>>

精英家教网阅读理解
九年级一班数学学习兴趣小组在解决下列问题中,发现该类问题不仅可以应用“三角形相似”知识解决问题,还可以“建立直角坐标系、应用一次函数”解决问题.
请先阅读下列“建立直角坐标系、应用一次函数”解决问题的方法,然后再应用此方法解决后续问题.
问题:如图(1),直立在点D处的标杆CD长3m,站立在点F处的观察者从点E处看到标杆顶C、旗杆顶A在一条直线上.已知BD=15m,FD=2m,EF=1.6m,求旗杆高AB.
解:建立如图(2)所示的直角坐标系,则线段AE可看作一个一次函数的图象.
由题意可得各点坐标为:点E(0,1.6),C(2,3),B(17,0),且所求的高度就为点A的纵坐标.
设直线AE的函数关系式为y=kx+b.
把E(0,1.6),C(2,3)代入得
b=1.6
2k+b=3.
解得
k=0.7
b=1.6.
精英家教网
∴y=0.7x+1.6.
∴当x=17时,y=0.7×17+1.6=13.5,即AB=13.5(m).
解决问题
请应用上述方法解决下列问题:
如图(3),河对岸有一路灯杆AB,在灯光下,小明在点D处测得自己的影长DF=3m,BD=9m,沿BD方向到达点F处再测得自己的影长FG=4m.如果小明的身高为1.6m,求路灯杆AB的高度.

查看答案和解析>>

8、某仓储系统有3条输入传送带,3条输出传送带.某日,控制室的电脑显示,每条输入传送带每小时进库的货物流量如图(1),每条输出传送带每小时出库的货物流量如图(2).若该日,仓库在0时至5时货物存量变化情况如图(3)所示,则下列正确说法共有(  )

①该日0时仓库中有货物2吨;
②该日5时仓库中有货物5吨;
③在0时至2时有2条输入传送带和1条输出传送带在工作;
④在2时至4时有2条输入传送带和2条输出传送带在工作;
⑤在4时至5时有2条输入传送带和3条输出传送带在工作.

查看答案和解析>>


同步练习册答案