23.请你设计方案.用一张长方形纸片折出来一个30°角.(可以用语言叙述.也可以画图说明) 查看更多

 

题目列表(包括答案和解析)

如图,正方形表示一张纸片,根据要求,需通过多次分割,将正方形纸片分割成若干个直角三角形,操作过程如下:第一次分割,将正方形纸片分成4个全等的直角三角形;第二次分割,将上次得到的直角三角形中的一个再分成4个全等直角三角形;以后按第二次分割的做法进行下去.

(1)请你设计出两种符合题意的分割方案图(要求在图1、图2中分别画出每种方案的第一次和第二次的分割线,只要有一条分割线段不同,就视为一种不同方案,图3供操作、实验用).

(2)设正方形的边长为a,请你就其中一种方案通过操作和观察将第二、第三次分割后所得的最小直角三角形的面积S填入下表:

(3)在条件(2)下,请你猜想:分割所得的最小直角三角形的面积S与分割次数n有什么关系?用数学表达式表示出来.

查看答案和解析>>

某班课题学习小组进行了一次纸杯制作与探究活动,所要制作的纸杯如图所示,规格要求是:杯口直径AB=6cm,杯底直径CD=4cm,杯壁母线AC=BD=6cm,并且在制作过程中纸杯的侧面展开图忽略拼接部分.在这样一个活动中,请你完成如下任务:
精英家教网
(1)求侧面展开图中弧MN所在圆的半径r;
精英家教网
(2)若用一个矩形纸片,按如图所示的方式剪出这个纸杯的侧面,求这个矩形纸片的长和宽.
精英家教网
(3)如果给你一张直径为24cm的圆形纸片,如图中⊙Q,你最多能剪出多少个纸杯侧面?(不要求说明理由),并在图中设计出剪裁方案.(图中是正三角形网格,每个小正三角形的边长均为6cm).
精英家教网

查看答案和解析>>

某班课题学习小组进行了一次纸杯制作与探究活动,所要制作的纸杯如图所示,规格要求是:杯口直径AB=6cm,杯底直径CD=4cm,杯壁母线AC=BD=6cm,并且在制作过程中纸杯的侧面展开图忽略拼接部分.在这样一个活动中,请你完成如下任务:

(1)求侧面展开图中弧MN所在圆的半径r;

(2)若用一个矩形纸片,按如图所示的方式剪出这个纸杯的侧面,求这个矩形纸片的长和宽.

(3)如果给你一张直径为24cm的圆形纸片,如图中⊙Q,你最多能剪出多少个纸杯侧面?(不要求说明理由),并在图中设计出剪裁方案.(图中是正三角形网格,每个小正三角形的边长均为6cm).

查看答案和解析>>

某班课题学习小组进行了一次纸杯制作与探究活动,所要制作的纸杯如图所示,规格要求是:杯口直径AB=6cm,杯底直径CD=4cm,杯壁母线AC=BD=6cm,并且在制作过程中纸杯的侧面展开图忽略拼接部分.在这样一个活动中,请你完成如下任务:

(1)求侧面展开图中弧MN所在圆的半径r;

(2)若用一个矩形纸片,按如图所示的方式剪出这个纸杯的侧面,求这个矩形纸片的长和宽.

(3)如果给你一张直径为24cm的圆形纸片,如图中⊙Q,你最多能剪出多少个纸杯侧面?(不要求说明理由),并在图中设计出剪裁方案.(图中是正三角形网格,每个小正三角形的边长均为6cm).

查看答案和解析>>

某班课题学习小组进行了一次纸杯制作与探究活动,所要制作的纸杯如图所示,规格要求是:杯口直径AB=6cm,杯底直径CD=4cm,杯壁母线AC=BD=6cm,并且在制作过程中纸杯的侧面展开图忽略拼接部分.在这样一个活动中,请你完成如下任务:

(1)求侧面展开图中弧MN所在圆的半径r;

(2)若用一个矩形纸片,按如图所示的方式剪出这个纸杯的侧面,求这个矩形纸片的长和宽.

(3)如果给你一张直径为24cm的圆形纸片,如图中⊙Q,你最多能剪出多少个纸杯侧面?(不要求说明理由),并在图中设计出剪裁方案.(图中是正三角形网格,每个小正三角形的边长均为6cm).

查看答案和解析>>


同步练习册答案