等腰梯形ABCD的边BC在x轴上.点A在y轴的正半轴上.A且AB=2.(1)求点B的坐标. (2)求经过A.B.D三点的抛物线的解式. 中所求的抛物线上是否存在一点P.使得S△PBC=S梯形ABCD?如果存在.请求出P点坐标.如果不存在.请说明理由. 查看更多

 

题目列表(包括答案和解析)

(满分13分)如图12.1,已知抛物线经过坐标原点Ox轴上另一点E(4,0),顶点M的坐标为 (m,4),直角梯形ABCD的顶点A与点O重合,ADAB分别在x轴、y轴上,且BC=1,AD=2,AB=3.

(1)求m的值及该抛物线的函数关系式;

(2)将直角梯形ABCD以每秒1个单位长度的速度从图12.1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向点B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图12.2所示).

① 当t为何值时,△PNC是以PN为底边的等腰三角形 ;

② 设以PNCD为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

(满分13分)如图12.1,已知抛物线经过坐标原点Ox轴上另一点E(4,0),顶点M的坐标为 (m,4),直角梯形ABCD的顶点A与点O重合,ADAB分别在x轴、y轴上,且BC=1,AD=2,AB=3.
(1)求m的值及该抛物线的函数关系式;
(2)将直角梯形ABCD以每秒1个单位长度的速度从图12.1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向点B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图12.2所示).
①当t为何值时,△PNC是以PN为底边的等腰三角形;
②设以PNCD为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

 

查看答案和解析>>

(满分13分)如图12.1,已知抛物线经过坐标原点Ox轴上另一点E(4,0),顶点M的坐标为 (m,4),直角梯形ABCD的顶点A与点O重合,ADAB分别在x轴、y轴上,且BC=1,AD=2,AB=3.

(1)求m的值及该抛物线的函数关系式;

(2)将直角梯形ABCD以每秒1个单位长度的速度从图12.1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向点B匀速移动,设它们运动的时间为t秒(0≤t≤3),直线AB与该抛物线的交点为N(如图12.2所示).

① 当t为何值时,△PNC是以PN为底边的等腰三角形 ;

② 设以PNCD为顶点的多边形面积为S,试问S是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由.

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>


同步练习册答案