题目列表(包括答案和解析)
(本题12分)
如图,直线
与
轴、
轴分别交于A、B两点,动点P从A点开始在线段AO上以每秒3个长度单位的速度向原点O运动. 动直线EF从
轴开始以每秒1个长度单位的速度向上平行移动(即EF∥
轴),并且分别与
轴、线段AB交于E、F点.连结FP,设动点P与动直线EF同时出发,运动时间为t秒.![]()
(1)当t=1秒时,求梯形OPFE的面积;
(2)t为何值时,梯形OPFE的面积最大,最大面积是多少?
(3)设t的值分别取t1、t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断.
(本题12分)
如图,直线
与
轴、
轴分别交于A、B两点,动点P从A点开始在线段AO上以每秒3个长度单位的速度向原点O运动.
动直线EF从
轴开始以每秒1个长度单位的速度向上平行移动(即EF∥
轴),并且分别与
轴、线段AB交于E、F点.连结FP,设动点P与动直线EF同时出发,运动时间为t秒.
![]()
(1)当t=1秒时,求梯形OPFE的面积;
(2)t为何值时,梯形OPFE的面积最大,最大面积是多少?
(3)设t的值分别取t1、t2时(t1≠t2),所对应的三角形分别为△AF1P1和△AF2P2.试判断这两个三角形是否相似,请证明你的判断.
(本题12分) 如图,在平行四边形ABCD中,AB在x轴上,D点y轴上,
,
,B点坐标为(4,0).点
是边
上一点,且
.点
、
分别从
、
同时出发,以1厘米/秒的速度分别沿
、
向点
运动(当点F运动到点B时,点E随之停止运动),EM、CD的延长线交于点P,FP交AD于点Q.⊙E半径为
,设运动时间为
秒。
(1)求直线BC的解析式。
(2)当
为何值时,
?
(3)在(2)问条件下,⊙E与直线PF是否相切;如果相切,加以证明,并求出切点的坐标。如果不相切,说明理由。
(本题12分)如图,在平面直角坐标系中,点A(10,0),以OA为直径在第一象限内作半圆C,点B是该半圆周上一动点,连结OB、AB,并延长AB至点D,使DB=AB,过点D作x轴垂线,分别交x轴、直线OB于点E、F,点E为垂足,连结CF.
![]()
1.(1)当∠AOB=30°时,求弧AB的长度;
2.(2)当DE=8时,求线段EF的长;
3.(3)在点B运动过程中,当交点E在O,C之间时,是否存在以点E、C、F为顶点的三角形与△AOB相
似,若存在,请求出此时点E的坐标;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com