题目列表(包括答案和解析)
(本小题满分12分)
某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y =
x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w内(元)(利润 = 销售额-成本-广告费).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳
x2 元的附加费,设月利润为w外(元)(利润 = 销售额-成本-附加费).
1.(1)当x = 1000时,y = 元/件,w内 = 元;
2.(2)分别求出w内,w外与x间的函数关系式(不必写x的取值范围);
3.(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值;
4.(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在国内还是在国外销售才能使所获月利润较大?
参考公式:抛物线
的顶点坐标是
.
(本小题满分12分)
如图,在直角梯形ABCD中,AD∥BC,
,AD = 6,BC = 8,
,点M是BC的中点.点P从点M出发沿MB以每秒1个单位长的速度向点B匀速运动,到达点B后立刻以原速度沿BM返回;点Q从点M出发以每秒1个单位长的速度在射线MC上匀速运动.在点P,Q的运动过程中,以PQ为边作等边三角形EPQ,使它与梯形ABCD在射线BC的同侧.点P,Q同时出发,当点P返回到点M时停止运动,点Q也随之停止.设点P,Q运动的时间是t秒(t>0).
1.(1)设PQ的长为y,在点P从点M向点B运动的过程中,写出y与t之间的函数关系式(不必写t的取值范围).
2.(2)当BP = 1时,求△EPQ与梯形ABCD重叠部分的面积.
3.(3)随着时间t的变化,线段AD会有一部分被△EPQ覆盖,被覆盖线段的长度在某个时刻会达到最大值,请回答:该最大值能否持续一个时段?若能,直接写出t的取值范围;若不能,请说明理由.
(本小题满分12分)
如图,在平面直角坐标系中,矩形OABC的两边分别在x轴和y轴上,OA=16 cm, OC=8cm,现有两动点P、Q分别从O、C同时出发,P在线段OA上沿OA方向以每秒2 cm的速度匀速运动,Q在线段CO上沿CO方向以每秒1 cm的速度匀速运动.设运动时间为t秒.
(1)用含t的式子表示△OPQ的面积S;
(2)判断四边形OPBQ的面积是否是一个定值,如果是,请求出这个定值;如果不是,请说明理由;
(3)当△OPQ∽△ABP时,抛物线y=
x2+bx+c经过B、P两点,求抛物线的解析式;
(4)在(3)的条件下,过线段BP上一动点M作
轴的平
行线交抛物线于N,求线段MN的最大值.
(本小题满分12分)
已知二次函数图象的顶点坐标为M(1,0),直线
与该二次函数的图象交于A,B两点,其中A点的坐标为(3,4),B点在
轴上.
![]()
1.(1)求m的值及这个二次函数的解析式;
2.(2)若P(
,0) 是
轴上的一个动点,过P作
轴的垂线分别与直线AB和二次函数的图象交于D、E两点.
①当0<
< 3时,求线段DE的最大值;
②若直线AB与抛物线的对称轴交点为N,
问是否存在一点P,使以M、N、D、E
为顶点的四边形是平行四边形?若存在,
请求出此时P点的坐标;若不存在,请
说明理由.
(本小题满分12分)已知某种水果的批发单价与批发量的函数关系如图1所示.
(1)请说明图中①、②两段函数图象的实际意义.
(2)写出批发该种水果的资金金额w(元)与批发量m(kg)之间的函数关系式;在上图的坐标系中画出该函数图象;指出金额在什么范围内,以同样的资金可以批发到较多数量的该种水果.
(3)经调查,某经销商销售该种水果的日最高销量与零售价之间的函数关系如图(2)所示,该经销商以每日售出60kg以上该种水果,且当日零售价不变,请你帮助该经销商设计进货和销售的方案,使得当日获得的利润最大.
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com