(1)连接OD,BD ∵AB为直径.∴BD⊥AC.又∵E是中 点.∴DE=BE=CE.∴∠1=∠2- ∵OD和OB都是⊙O的半径.∴∠3=∠4 ∵∠ABC=90º.∴∠1+∠3=∠2+∠4=90º- ∴DE是⊙O的切线.- (2)∵∠ABC=90º.AB=3.BC=4.∴AC=5.- 又∵BD⊥AC.∴BD×AC=AB×BC,∴- 查看更多

 

题目列表(包括答案和解析)

(2013•乌鲁木齐)如图.在平面直角坐标系中,边长为
2
的正方形ABCD的顶点A、B在x轴上,连接OD、BD、△BOD的外心I在中线BF上,BF与AD交于点E.
(1)求证:△OAD≌△EAB;
(2)求过点O、E、B的抛物线所表示的二次函数解析式;
(3)在(2)中的抛物线上是否存在点P,其关于直线BF的对称点在x轴上?若有,求出点P的坐标;
(4)连接OE,若点M是直线BF上的一动点,且△BMD与△OED相似,求点M的坐标.

查看答案和解析>>

精英家教网如图,在△ABC中,∠A=90°,O是BC边上一点,以O为圆心的半圆分别与AB、AC边相切于D、E两点,连接OD.已知BD=2,AD=3.
求:(1)tanC;
(2)图中两部分阴影面积的和.

查看答案和解析>>

如图,在平面直角坐标系中,抛物线经过点A的坐标为(m,m),点B的坐标为(n,-n),且经过原点O,连接OA、OB、AB,线段AB交y轴于点C.已知实数m,n(m<n)分别是方程x2-2x-3=0的两根.
(1)m,n的值.
(2)求抛物线的解析式.
(3)若点P为线段OB上的一个动点(不与点O、B重合),直线PC与抛物线交于D、E两点(点D在y轴右侧),连接OD,BD.当△OPC为等腰三角形时,求点P的坐标.

查看答案和解析>>

已知:如图,在平面直角坐标系中,0为坐标原点,直线y=x+3与x、y轴分别相交于点A、B,点C在y轴的负半轴上,且∠CAO=30°,点D在线段AC的延长线上,且CD=CO,连接OD、BD,BD交x轴于点E.
(1)求直线AC的解析式;
(2)求证:OB=OD;
(3)图中有几对相似三角形(不添加其他字母和线段)请写出所有的相似三角形,并选择其中的一对加以证明.
精英家教网

查看答案和解析>>

如图,直线y=x-3交坐标轴于A、B两点,交双曲线y=
2x
于点D(D在第一象限),过D作两坐标轴的垂线DC、DE,连接OD.
(1)在不对图形作任何变动的情况下,直接写出图形中的三个等腰直角三角形;
(2)求证:AD•BD=4;
(3)将直线AB沿x轴平移,是否存在直线AB,使得四边形OBCD为平行四边形?若存在,求直线的解析式;若不存在,说明理由.

查看答案和解析>>


同步练习册答案