提示:取的中点为.连接.则且.则 四边形是平行四边形.故 查看更多

 

题目列表(包括答案和解析)

(本小题14分)四棱锥中,底面为矩形,侧面底面.

(I)取的中点为的中点为,证明:FG∥面

(II)证明:.

查看答案和解析>>

记平面内与两定点A1(-2,0),A2(2,0)连线的斜率之积等于常数m(其中m<0)的动点B的轨迹,加上A1,A2两点所构成的曲线为C
(I)求曲线C的方程,并讨论C的形状与m的值的关系;
(Ⅱ)当m=-
3
4
时,过点F(1,0)且斜率为k(k#0)的直线l1交曲线C于M.N两点,若弦MN的中点为P,过点P作直线l2交x轴于点Q,且满足
MN
PQ
=0
.试求
|
PQ
|
|
MN
|
的取值范围.

查看答案和解析>>

记平面内与两定点A1(-2,0),A2(2,0)连线的斜率之积等于常数m(其中m<0)的动点B的轨迹,加上A1,A2两点所构成的曲线为C
(I)求曲线C的方程,并讨论C的形状与m的值的关系;
(Ⅱ)当m=时,过点F(1,0)且斜率为k(k#0)的直线l1交曲线C于M.N两点,若弦MN的中点为P,过点P作直线l2交x轴于点Q,且满足.试求的取值范围.

查看答案和解析>>

记平面内与两定点A1(-2,0),A2(2,0)连线的斜率之积等于常数m(其中m<0)的动点B的轨迹,加上A1,A2两点所构成的曲线为C
(I)求曲线C的方程,并讨论C的形状与m的值的关系;
(Ⅱ)当m=-
3
4
时,过点F(1,0)且斜率为k(k#0)的直线l1交曲线C于M.N两点,若弦MN的中点为P,过点P作直线l2交x轴于点Q,且满足
MN
PQ
=0
.试求
|
PQ
|
|
MN
|
的取值范围.

查看答案和解析>>

如图,在直三棱柱中,底面为等腰直角三角形,为棱上一点,且平面平面.

(Ⅰ)求证:点为棱的中点;

(Ⅱ)判断四棱锥的体积是否相等,并证明。

【解析】本试题主要考查了立体几何中的体积问题的运用。第一问中,

易知。由此知:从而有又点的中点,所以,所以点为棱的中点.

(2)中由A1B1⊥平面B1C1CD,BC⊥平面A1ABD,D为BB1中点,可以得证。

(1)过点点,取的中点,连且相交于,面内的直线。……3分

且相交于,且为等腰三角形,易知。由此知:,从而有共面,又易知,故有从而有又点的中点,所以,所以点为棱的中点.               …6分

(2)相等.ABC-A1B1C1为直三棱柱,∴BB1⊥A1B1,BB1⊥BC,又A1B1⊥B1C1,BC⊥AB,

∴A1B1⊥平面B1C1CD,BC⊥平面A1ABD(9分)∴VA1-B1C1CD=1 /3 SB1C1CD•A1B1=1/ 3 ×1 2 (B1D+CC1)×B1C1×A1B1VC-A1ABD=1 /3 SA1ABD•BC=1 /3 ×1 2 (BD+AA1)×AB×BC∵D为BB1中点,∴VA1-B1C1CD=VC-A1ABD

 

查看答案和解析>>


同步练习册答案