(1).设且在的延长线上.使,.则求点的坐标. (2).编写一个程序.对于输入的变量x的值.输出相应的y=的值. 查看更多

 

题目列表(包括答案和解析)

给出以下5个命题:
①曲线x2-(y-1)2=1按
a
=(1,-2)
平移可得曲线(x+1)2-(y-3)2=1;
②设A、B为两个定点,n为常数,|
PA
|-|
PB
|=n
,则动点P的轨迹为双曲线;
③若椭圆的左、右焦点分别为F1、F2,P是该椭圆上的任意一点,延长F1P到点M,使|F2P|=|PM|,则点M的轨迹是圆;
④A、B是平面内两定点,平面内一动点P满足向量
AB
AP
夹角为锐角θ,且满足 |
PB
| |
AB
| +
PA
AB
=0
,则点P的轨迹是圆(除去与直线AB的交点);
⑤已知正四面体A-BCD,动点P在△ABC内,且点P到平面BCD的距离与点P到点A的距离相等,则动点P的轨迹为椭圆的一部分.
其中所有真命题的序号为
 

查看答案和解析>>

如图,在平面直角坐标系xoy中,已知F1,F2分别是椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,A,B分别是椭圆E的左、右顶点,且
AF2
+5
BF2
=
0

(1)求椭圆E的离心率;
(2)已知点D(1,0)为线段OF2的中点,M 为椭圆E上的动点(异于点A、B),连接MF1并延长交椭圆E于点N,连接MD、ND并分别延长交椭圆E于点P、Q,连接PQ,设直线MN、PQ的斜率存在且分别为k1、k2,试问是否存在常数λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,说明理由.

查看答案和解析>>

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点分别为F1、F2,点P在椭圆上且在x轴上方,|PF1|=7,|PF2|=5,cos∠F1F2P=
1
5

(1)求椭圆C的方程;
(2)抛物线D:y2=4mx(m>0)过点P,连接PF2并延长与抛物线D交于点Q,M是抛物线D上一动点(且M在P与Q之间运动),求△MPQ面积的最大值.

查看答案和解析>>

已知点P1(x0,y0)为双曲线
x2
3b2
-
y2
b2
=1(b>0,b为常数)
上任意一点,F2为双曲线的右焦点,过P1作右准线的垂线,垂足为A,连接F2A并延长交y轴于点P2
(1)求线段P1P2的中点P的轨迹E的方程;
(2)是否存在过点F2的直线l,使直线l与(1)中轨迹在y轴右侧交于R1、R2两不同点,且满足
OR1
OR2
=4b2
,(O为坐标原点),若存在,求直线l的方程;若不存在,请说明理由;
(3)设(1)中轨迹E与x轴交于B、D两点,在E上任取一点Q(x1,y1)(y1≠0),直线QB、QD分别交y轴于M、N点,求证:以MN为直径的圆恒过两个定点.

查看答案和解析>>

. (本小题满分12分)

如图,设抛物线C1:的准线与x轴交于F1,焦点为F2 ;以F1,F2为焦点,离心率的椭圆C2与抛物线C1在X轴上方的交点为P,延长PF2交抛物线于点Q,M是抛物线上一动点,且M在P与Q之间运动.

(I)当m = 1时,求椭圆C2的方程;

 (II)当的边长恰好是三个连续的自然数时,求面积的最大值.

 

 

查看答案和解析>>


同步练习册答案