5.“5≤5 是 形式.其中p: .q: . 查看更多

 

题目列表(包括答案和解析)

我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:数学公式.如:数学公式,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),试将m表示成x进制的简记形式.
(2)若数列{an}满足a1=2,数学公式数学公式(n∈N*),是否存在实常数p和q,对于任意的n∈N*,bn=p•8n+q总成立?若存在,求出p和q;若不存在,说明理由.
(3)若常数t满足t≠0且t>-1,数学公式,求数学公式

查看答案和解析>>

我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:.如:,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.
(1)已知m=(1-2x)(1+3x2)(其中x≠0),试将m表示成x进制的简记形式.
(2)若数列{an}满足a1=2,(n∈N*),是否存在实常数p和q,对于任意的n∈N*,bn=p•8n+q总成立?若存在,求出p和q;若不存在,说明理由.
(3)若常数t满足t≠0且t>-1,,求

查看答案和解析>>

我们规定:对于任意实数A,若存在数列{an}和实数x(x≠0),使得A=a1+a2x+a3x2+…+anxn-1,则称数A可以表示成x进制形式,简记为:

.如:,则表示A是一个2进制形式的数,且A=-1+3×2+(-2)×22+1×23=5.

(1)已知m=(1-2x)(1+3x2)(其中x≠0),试将m表示成x进制的简记形式.

(2)若数列{an}满足a1=2,

,是否存在实常数p和q,对于任意的n∈N*,bn=p·8n+q总成立?若存在,求出p和q;若不存在,说明理由.

(3)若常数t满足t≠0且t>-1,,求

查看答案和解析>>

(1)选修4-2:矩阵与变换
若二阶矩阵M满足
(Ⅰ)求二阶矩阵M;
(Ⅱ)把矩阵M所对应的变换作用在曲线3x2+8xy+6y2=1上,求所得曲线的方程.
(2)选修4-4:坐标系与参数方程
已知在直角坐标系xOy中,曲线C的参数方程为(t为非零常数,θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为
(Ⅰ)求曲线C的普通方程并说明曲线的形状;
(Ⅱ)是否存在实数t,使得直线l与曲线C有两个不同的公共点A、B,且(其中O为坐标原点)?若存在,请求出;否则,请说明理由.
(3)选修4-5:不等式选讲
已知函数f(x)=|x-2|+|x-4|的最小值为m,实数a,b,c,n,p,q满足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;
(Ⅱ)求证:

查看答案和解析>>

(2012•泉州模拟)(1)选修4-2:矩阵与变换
若二阶矩阵M满足M
12
34
=
710
46

(Ⅰ)求二阶矩阵M;
(Ⅱ)把矩阵M所对应的变换作用在曲线3x2+8xy+6y2=1上,求所得曲线的方程.
(2)选修4-4:坐标系与参数方程
已知在直角坐标系xOy中,曲线C的参数方程为
x=2tcosθ
y=2sinθ
(t为非零常数,θ为参数),在极坐标系(与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴)中,直线l的方程为ρsin(θ-
π
4
)=2
2

(Ⅰ)求曲线C的普通方程并说明曲线的形状;
(Ⅱ)是否存在实数t,使得直线l与曲线C有两个不同的公共点A、B,且
OA
OB
=10
(其中O为坐标原点)?若存在,请求出;否则,请说明理由.
(3)选修4-5:不等式选讲
已知函数f(x)=|x-2|+|x-4|的最小值为m,实数a,b,c,n,p,q满足a2+b2+c2=n2+p2+q2=m.
(Ⅰ)求m的值;
(Ⅱ)求证:
n4
a2
+
p4
b2
+
q4
c2
≥2

查看答案和解析>>


同步练习册答案