满足的一个取值区间为( ) A. B. C. D. 查看更多

 

题目列表(包括答案和解析)

设定义在区间[x1,x2]上的函数y=f(x)的图象为C,点A、B的坐标分别为(x1,f(x1)),(x2f(x2))且M(x,f(x))为图象C上的任意一点,O为坐标原点,当实数λ满足x=λx1+(1-λ)x2时,记向量
ON
OA
+(1-λ)
OB
.若|
MN
|≤k
恒成立,则称函数y=f(x)在区间[x1,x2]上可在标准k下线性近似,其中k是一个确定的正数.
(Ⅰ)求证:A、B、N三点共线
(Ⅱ)设函数f(x)=x2在区间[0,1]上可的标准k下线性近似,求k的取值范围;
(Ⅲ)求证:函数g(x)=lnx在区间(em,em+1)(m∈R)上可在标准k=
1
8
下线性近似.
(参考数据:e=2.718,ln(e-1)=0.541)

查看答案和解析>>

设定义在区间[x1,x2]上的函数y=f(x)的图象为C,点A、B的坐标分别为(x1,f(x1)),(x2f(x2))且M(x,f(x))为图象C上的任意一点,O为坐标原点,当实数λ满足x=λx1+(1-λ)x2时,记向量数学公式恒成立,则称函数y=f(x)在区间[x1,x2]上可在标准k下线性近似,其中k是一个确定的正数.
(Ⅰ)求证:A、B、N三点共线
(Ⅱ)设函数f(x)=x2在区间[0,1]上可的标准k下线性近似,求k的取值范围;
(Ⅲ)求证:函数g(x)=lnx在区间(em,em+1)(m∈R)上可在标准数学公式下线性近似.
(参考数据:e=2.718,ln(e-1)=0.541)

查看答案和解析>>

设定义在区间[x1,x2]上的函数y=f(x)的图象为C,点A、B的坐标分别为(x1,f(x1)),(x2f(x2))且M(x,f(x))为图象C上的任意一点,O为坐标原点,当实数λ满足x=λx1+(1-λ)x2时,记向量
ON
OA
+(1-λ)
OB
.若|
MN
|≤k
恒成立,则称函数y=f(x)在区间[x1,x2]上可在标准k下线性近似,其中k是一个确定的正数.
(Ⅰ)求证:A、B、N三点共线
(Ⅱ)设函数f(x)=x2在区间[0,1]上可的标准k下线性近似,求k的取值范围;
(Ⅲ)求证:函数g(x)=lnx在区间(em,em+1)(m∈R)上可在标准k=
1
8
下线性近似.
(参考数据:e=2.718,ln(e-1)=0.541)

查看答案和解析>>

设定义在区间[x1,x2]上的函数y=f(x)的图象为C,点A、B的坐标分别为(x1,f(x1)),(x2f(x2))且M(x,f(x))为图象C上的任意一点,O为坐标原点,当实数λ满足x=λx1+(1-λ)x2时,记向量恒成立,则称函数y=f(x)在区间[x1,x2]上可在标准k下线性近似,其中k是一个确定的正数.
(Ⅰ)求证:A、B、N三点共线
(Ⅱ)设函数f(x)=x2在区间[0,1]上可的标准k下线性近似,求k的取值范围;
(Ⅲ)求证:函数g(x)=lnx在区间(em,em+1)(m∈R)上可在标准下线性近似.
(参考数据:e=2.718,ln(e-1)=0.541)

查看答案和解析>>

已知二次函数f(x)=ax2+bx+c(a,b,c均为实常数,且a≠0),满足条件f(0)=f(2)=0,且方程f(x)=2x有两个相等的实数根.
(1)求函数f(x)的解析式;
(2)试确定一个区间P,使得f(x)在P内单调递减且不等式f(x)≥0在P内恒成立;
(3)是否存在这样的实数m、n,满足m<n,使得f(x)在区间[m,n]内的取值范围恰好是[4m,4n]?如果存在,试求出m、n的值;如果不存在,请说明理由.

查看答案和解析>>


同步练习册答案