求过点M和B(3,2)两点的距离相等的直线方程. 查看更多

 

题目列表(包括答案和解析)

设椭圆
x2
a2
+
y2
b2
=1(a>b>0)
的左焦点为F,上顶点为A,过点A与AF垂直的直线分别交椭圆和x轴正半轴于P,Q两点,且AP:PQ=8:5.
(1)求椭圆的离心率;
(2)已知直线l过点M(-3,0),倾斜角为
π
6
,圆C过A,Q,F三点,若直线l恰好与圆C相切,求椭圆方程.

查看答案和解析>>

如图,椭圆的方程为(a>0),其右焦点为F,把椭圆的长轴分成6等份,过每个分点作x轴的垂线交椭圆上半部于点P1、P2、P3、P4、P5五个点,且|P1F|+|P2F|+|P3F|+|P4F|+|P5F|=.

(1)求椭圆的方程;

(2)设直线l过F点(l不垂直坐标轴),且与椭圆交于A、B两点,线段AB的垂直平分线交x轴于点M(m,0),试求m的取值范围.

(文)某厂家拟在2006年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元(m≥0)满足x=3(k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件.已知2006年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金,不包括促销费用).

(1)将2006年该产品的利润y万元表示为年促销费用m万元的函数;

(2)该厂家2006年的促销费用投入多少万元时,厂家的利润最大?

查看答案和解析>>

已知中心在原点O,焦点F1、F2在x轴上的椭圆E经过点C(2,2),且抛物线的焦点为F1.

(Ⅰ)求椭圆E的方程;

(Ⅱ)垂直于OC的直线l与椭圆E交于A、B两点,当以AB为直径的圆P与y轴相切时,求直线l的方程和圆P的方程.

【解析】本试题主要考查了椭圆的方程的求解以及直线与椭圆的位置关系的运用。第一问中,设出椭圆的方程,然后结合抛物线的焦点坐标得到,又因为,这样可知得到。第二问中设直线l的方程为y=-x+m与椭圆联立方程组可以得到

,再利用可以结合韦达定理求解得到m的值和圆p的方程。

解:(Ⅰ)设椭圆E的方程为

①………………………………1分

  ②………………2分

  ③       由①、②、③得a2=12,b2=6…………3分

所以椭圆E的方程为…………………………4分

(Ⅱ)依题意,直线OC斜率为1,由此设直线l的方程为y=-x+m,……………5分

 代入椭圆E方程,得…………………………6分

………………………7分

………………8分

………………………9分

……………………………10分

    当m=3时,直线l方程为y=-x+3,此时,x1 +x2=4,圆心为(2,1),半径为2,

圆P的方程为(x-2)2+(y-1)2=4;………………………………11分

同理,当m=-3时,直线l方程为y=-x-3,

圆P的方程为(x+2)2+(y+1)2=4

 

查看答案和解析>>


同步练习册答案