题目列表(包括答案和解析)
| x | 1.5 | 3 | 5 | 6 | 7 | 8 | 9 | 14 | 27 |
| lgx | 3a-b+c | 2a-b | a+c | 1+a-b-c | 2(a+c) | 3(1-a-c) | 2(2a-b) | 1-a+2b | 3(2a-b) |
| x | 3 | -2 | 4 |
| ||||||
| y | -2
|
0 | -4 |
|
| OM |
| ON |
| x | 3 | -2 | 4 |
| ||||||
| y | -2
|
0 | -4 |
|
| OM |
| ON |
(本小题12分) 适当饮用葡萄酒可以预防心脏病,下表中的信息是19个发达国家一年中平均每人喝葡萄酒摄取酒精的升数z以及一年中每10万人因心脏病死亡的人数,
|
国家 |
澳大利亚 |
奥地利 |
比利时 |
加拿大 |
丹麦 |
芬兰 |
法国 |
冰岛 |
爰尔兰 |
意大利 |
|
x |
2.5 |
3.9 |
2.9 |
2.4 |
2.9 |
0.8 |
9.1 |
0.8 |
0.7 |
7.9 |
|
y |
211 |
167 |
131 |
191 |
220 |
297 |
71 |
221 |
300 |
107 |
|
国家 |
荷兰 |
新西兰 |
挪威 |
西班牙 |
瑞典 |
瑞士 |
英国 |
美国 |
德国 |
|
x |
1.8 |
1.9 |
0.8 |
6.5 |
1.6 |
5.8 |
1.3 |
1.2 |
2.7 |
|
y |
167 |
266 |
227 |
86 |
207 |
115 |
285 |
199 |
172 |
(1)画出散点图,说明相关关系的方向、形式及强度;
(2)求出每10万人中心脏病死亡人数,与平均每人从葡萄酒得到的酒精x(L)之间的线性回归方程.
(3)用(2)中求出的方程来预测以下两个国家的心脏病死亡率,其中一个国家的成人每年平均从葡萄酒中摄取1L的酒精,另一国则是8 L.
(本小题满分14分)设椭圆
与抛物线
的焦点均在
轴上,
的中心和
的顶点均为原点,从每条曲线上至少取两个点,将其坐标记录于下表中:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1)求
,
的标准方程, 并分别求出它们的离心率
;
2)设直线
与椭圆
交于不同的两点
,且
(其中
坐标原点),请问是否存在这样的直线
过抛物线
的焦点
若存在,求出直线
的方程;若不存在,请说明理由.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com