例题: 例1.(1)求方程x2-2x-3=0的解集. (2)求不等式3x-2>6的解集. 例2.求方程x2+1=0的所有实数解构成的集合. 例3.已知求m的值与集合中的所有元素. 例4.已知A={}试用列举法表示集合A. 查看更多

 

题目列表(包括答案和解析)

例1.求函数y=
x2-1(0≤x≤1)
x2(-1≤x<0)
的反函数.

查看答案和解析>>

例3.设f(x)=x2-x+m,log2f(a)=2,f(log2a)=m,a>0且a≠1解不等式组
f(log2x)>f(1)
f(1)>log2f(x)

查看答案和解析>>

某空调器厂为了规范其生产的空调器的市场营销,在一个地区指定一家总经销商,规定经总销商之间不得“串货”(即一个地区的总经销商不得向其他地区销售该品牌空调器).经空调器厂和各地区总经销商联合市场调查,预计今年的七月份(销售旺季),市场将需求售价为1800元/台的P型空调器200万台,但该厂的生产能力只有150万台.为了获得足够的资金组织生产,该空调器厂规定,每年的销售旺季前预付货款的总经销商在旺季将获得供货优待.以东部地区为例,今年的7月份市场将需求P型空调器10万台,如果东部地区的总经销商在2月1日将10万台P型空调器的货款全部付清,空调器厂按1500元/台的价格收取货款,并在7月1日保证供货;每推迟一个月打入货款,每台空调器的价格将增加6元,并且供货量将减少2%.已知银行的月利率为0.5%.
(I)就P型空调器的进货单价而言,总经销商在2月1日和7月1日打入货款,哪个划算?
(II)就东部地区经销P型空调器而言,总经销商在2月1日和7月1日打入货款,哪个划算?
(III)东部地区的小王7月1日用分期付款的方式购买了1台P型空调器,如果采用每月“等额还款”的方式从7月1日开始分6次付清,小王每一次的付款额约是多少?
(以下数据仅供参考:1.0054=1.020151,1.0055=1.025251,1.0056=1.030378,0.985=0.903921,0.986=0.885842,0.987=0.868126)

查看答案和解析>>

例4、已知函数y=f(x)是定义在R上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数.又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时函数取得最小值-5.
①证明:f(1)+f(4)=0;②求y=f(x),x∈[1,4]的解析式;③求y=f(x)在[4,9]上的解析式.

查看答案和解析>>

21、例4.已知f(x)=ax2+bx+c,g(x)=ax+b(a、b、c∈R),当x∈[-1,1]时,|f(x)|≤1
(1)证明:|c|≤1.
(2)x∈[-1,1]时,证明|g(x)|≤2.
(3)设a>0,当-1≤x≤1时,g(x)max=2,求f(x).

查看答案和解析>>


同步练习册答案