教材p5-1.2 查看更多

 

题目列表(包括答案和解析)

(2012•奉贤区二模)数列{an} 的各项均为正数,a1=t,k∈N*,k≥1,p>0,an+an+1+an+2+…+an+k=6pn
(1)当k=1,p=5时,若数列{an}是成等比数列,求t的值;
(2)当t=1,k=1时,设Tn=a1+
a2
p
+
a3
p2
+…+
an-1
pn-1
+
an
pn-1
,参照高二教材书上推导等比数列前n项求和公式的推导方法,求证:数列
1+p
p
Tn-
an
pn
-6n
是一个常数;
(3)设数列{an}是一个等比数列,求t(用p,k的代数式表示).

查看答案和解析>>

4、如图是人教A版教材选修1-2第二章“推理与证明”的知识结构图(部分),如果要加入知识点“三段论”,则应该放在图中(  )

查看答案和解析>>

(2006•西城区二模)已知实数c≥0,曲线C:y=
x
与直线l:y=x-c的交点为P(异于原点O).在曲线C上取一点P1(x1,y1),过点P1作P1Q1平行于x轴,交直线l于Q1,过点Q1作Q1P2平行于y轴,交曲线C于P2(x2,y2);接着过点P2作P2Q2平行于x轴,交直线l于Q2,过点Q2作Q2P3平行于y轴,交曲线C于P3(x3,y3);如此下去,可得到点P4(x4,y4),P5(x5,y5),…,Pn(xn,yn),设点P坐标为(a,
a
)
,x1=b,0<b<a.
(1)试用c表示a,并证明a≥1;
(2)证明:x2>x1,且xn<a(n∈N*);
(3)当c=0,b≥
1
2
时,求证:
n
k=1
xk+1-xk
xk+2
42
2
(n,k∈N*)

查看答案和解析>>

(文科做)已知点A1(2,0),A2(1,t),A3(0,b),A4(-1,t),A5(-2,0),其中t>0,b为正常数.
(1)半径为2的圆C1经过Ai(i=1,2,…,5)这五个点,求b和t的值;
(2)椭圆C2以F1(-c,0),F2(c,0)(c>0)为焦点,长轴长是4.若AiF1+AiF2=4(i=1,2,…,5),试用b表示t;
(3)在(2)中的椭圆C2中,两线段长的差A1F1-A1F2,A2F1-A2F2,…,A5F1-A5F2构成一个数列{an},求证:对n=1,2,3,4都有an+1<an.(本小题解答中用到了椭圆的第一定义与焦半径公式,新教材实验区的学生可不解第三小题,请学习时注意)

查看答案和解析>>

11、已知点列如下:P1(1,1),P2(1,2),P3(2,1),P4(1,3),P5(2,2),P6(3,1),P7(1,4),P8(2,3),P9(3,2),P10(4,1),P11(1,5),P12(2,4),…,则P60的坐标为(  )

查看答案和解析>>


同步练习册答案