题目列表(包括答案和解析)
已知函数f(x)=
(k为常数,e=2.718 28…是自然对数的底数),曲线y=f(x)在点(1,f(1))处的切线与x轴平行.
(1)求k的值;
(2)求f(x)的单调区间;
(3)设g(x)=(x2+x)f′(x),其中f′(x)为f(x)的导函数,证明:对任意x>0,g(x)<1+e-2.
22、(本题满分14分)
定义F(x,y)=yx(x>0,y>0).
(1)设函数f(n)=(n∈N*) , 求函数f(n)的最小值;
(2)设g(x)=F(x,2),正项数列{an}满足;a1=3,g(an+1)=
,求数列{an}的通项公式,并求所有可能乘积aiaj(1≤i≤j≤n)的和.
设M是满足下列条件的函数f(x)构成的集合:“①方程f(x)-x=0有实数根;②函数f(x)的导数f′(x)满足0<f′(x)<1.”
(1)若函数f(x)为集合M中的任一元素,试证明方程f(x)-x=0只有一个实根;
(2)判断函数g(x)=
-
+3(x>1)是否是集合M中的元素,并说明理由;
(3)“对于(2)中函数g(x)定义域内的任一区间[m,n],都存在x0∈[m,n],使得g(n)-g(m)=(n-m)g′(x0)”,请利用函数y=lnx的图像说明这一结论.
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com