精英家教网 > 高中数学 > 题目详情
已知函数f(x)= xe-x(x∈R)。
 (1)求函数f(x)的单调区间和极值;
 (2)已知函数y=g(x)的图象与函数y=f(x)的图象关于直线x=1对称,证明当x>1时,f(x)>g(x);
 (3)如果x1≠x2,且f(x1)=f(x2),证明x1+x2>2。
解:(1)f'(x)=(1-x)e-x
令f'(x)=0,解得x=1
当x变化时,f'(x),f(x)的变化情况如下表:

所以f(x)在(-∞,1)内是增函数,在(1,+∞)内是减函数
函数f(x)在x=1处取得极大值f(1),且
(2)证明:由题意可知g(x)=f(2-x),得g(x)=(2-x)ex-2
令F(x)=f(x)-g(x),即F(x)=xe-x+(x -2)ex-2
于是F'(x)=(x-1)(e2x-2-1)e-x
当x>1时,2x-2>0,从而e2x-2-1 >0
又e-x>0,
所以F'(x)>0
从而函数F(x)在[1,+∞)上是增函数
又F(1)=e-1-e-1=0,
所以x>1时,有F(x)>F(1)=0,即f(x)>g(x)。
(3)①若(x1-1)(x2-1)=0,由(1)及f(x1)= f(x2),得x1=x2=1,与x1≠x2矛盾
②若(x1-1)(x2-1)>0,由(1)及f(x1)=f(x2),得x1=x2,与x1≠x2矛盾
根据①②得(x1-1)(x2-1)<0
不妨设x1<1,x2>1
由(2)可知,f(x2)>g(x2),g(x2)=f(2-x2),
所以f(x2)>f(2 -x2),
从而f(x1)>f(2-x2
因为x2>1,
所以2-x2<1
又由(1)可知函数f(x)在区间(-∞,1)内是增函数,
所以x1>2-x2,即x1+x2>2。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案