已知PA垂直于平行四边形ABCD所在平面.若PC⊥BD.则平行四边形一定是 . 13*. 将长为3米的直铜线AD沿三等分点B.C折成三 段.并使三线段AB.BC.CD所在直线两 两垂直则三棱锥A-BCD的外接球的表面积 为 米2. 查看更多

 

题目列表(包括答案和解析)

已知圆C过点P(1,1),且圆M:(x+2)2+(y+2)2=r2(r>0)关于直线x+y+2=0对称.
(1)判断圆C与圆M的位置关系,并说明理由;
(2)过点P作两条相异直线分别与⊙C相交于A,B.
①若直线PA和直线PB互相垂直,求PA+PB的最大值;
②若直线PA和直线PB与x轴分别交于点G、H,且∠PGH=∠PHG,O为坐标原点,试判断直线OP和AB是否平行?请说明理由.

查看答案和解析>>

精英家教网如图所示,为半圆,AB为半圆直径,O为半圆圆心,且OD⊥AB,Q为线段OD的中点,已知|AB|=4,曲线C过Q点,动点P在曲线C上运动且保持|PA|+|PB|的值不变.
(Ⅰ)建立适当的平面直角坐标系,求曲线C的方程;
(Ⅱ)过D点且与AB不垂直的直线l与曲线C相交于不同的两点M、N,问是否存在这样的直线l使
OM
+
ON
AQ
平行,若平行,求出直线l的方程,若不平行,请说明理由.

查看答案和解析>>

如图,已知三棱锥P-ABC的侧面PAC是底角为45°的等腰三角形,PA=PC,且该侧面垂直于底面,∠ACB=90°,AB=10,BC=6,B1C1=3.
(1)求证:二面角A-PB-C是直二面角;
(2)求二面角P-AB-C的正切值;
(3)若该三棱锥被平行于底面的平面所截,得到一个几何体ABC-A1B1C1,求几何体ABC-A1B1C1的侧面积.

查看答案和解析>>

已知双曲线G的中心在原点,它的渐近线与圆x2+y2-10x+20=0相切.过点P(-4,0)作斜率为
14
的直线l,使得l和G交于A,B两点,和y轴交于点C,并且点P在线段AB上,又满足|PA|•|PB|=|PC|2
(1)求双曲线G的渐近线的方程;
(2)求双曲线G的方程;
(3)椭圆S的中心在原点,它的短轴是G的实轴、如果S中垂直于l的平行弦的中点的轨迹恰好是G的渐近线截在S内的部分AB,若P(x,y)(y>0)为椭圆上一点,求当△ABP的面积最大时点P的坐标.

查看答案和解析>>

下列命题中,其中不正确的个数是(  )
①若两条直线和第三条直线所成的角相等,则这两条直线相互平行
②若两条直线都和第三条直线垂直,则这两条直线互相平行
③已知平面α⊥平面γ,平面β⊥平面γ,α∩β=l,则l⊥γ
④一个平面α内两条不平行的直线都平行于另一平面β,则α∥β
⑤过△ABC所在平面α外一点P,作PO⊥α,垂足为O,连接PA、PB、PC,若有PA=PB=PC,则点O是△ABC的内心
⑥垂直于同一条直线的两个平面互相平行.

查看答案和解析>>


同步练习册答案