已知圆:.定点A在直线上.点在线段上.过点作圆的切线.切点为.(1)若.求直线的方程,(2)经过三点的圆的圆心是.求线段长的最小值. 查看更多

 

题目列表(包括答案和解析)

本题设有(1)、(2)、(3)三个选考题,每题7分,请考生任选2题作答,满分14分
(1)选修4-2:矩阵与变换
变换T是将平面上每个点M(x,y)的横坐标乘2,纵坐标乘4,变到点M′(2x,4y).
(Ⅰ)求变换T的矩阵;
(Ⅱ)圆C:x2+y2=1在变换T的作用下变成了什么图形?
(2)选修4-4:坐标系与参数方程
已知极点与原点重合,极轴与x轴的正半轴重合.若曲线C1的极坐标方程为:5ρ2-3ρ2cos2θ-8=0,直线?的参数方程为:
x=1-
3
t
y=t
(t为参数).
(Ⅰ)求曲线C1的直角坐标方程;
(Ⅱ)直线?上有一定点P(1,0),曲线C1与?交于M,N两点,求|PM|.|PN|的值.
(3)选修4-5:不等式选讲
已知a,b,c为实数,且a+b+c+2-2m=0,a2+
1
4
b2+
1
9
c2
+m-1=0.
(Ⅰ)求证:a2+
1
4
b2+
1
9
c2
(a+b+c)2
14

(Ⅱ)求实数m的取值范围.

查看答案和解析>>

.(本题满分14分)
已知圆M定点,点为圆上的动点,点上,点上,且满足
(Ⅰ) 求点G的轨迹C的方程;
(Ⅱ) 过点(2,0)作直线l,与曲线C交于A,B两点,O是坐标原点,设,是否存在这样的直线l,使四边形OASB的对角线相等(即|OS|=|AB|)?若存在,求出直线l的方程;若不存在,试说明理由。

查看答案和解析>>

(本小题满分14分)

.已知中心在原点的椭圆的一个焦点为(0 ,),且过点,过A作倾斜角互补的两条直线,它们与椭圆的另一个交点分别为点B和点C。

(1)求椭圆的标准方程;

(2)求证:直线BC的斜率为定值,并求这个定值。

(3)求三角形ABC面积的最大值。

查看答案和解析>>

(本小题满分14分)

     已知椭圆C的左,右焦点坐标分别为,离心率是。椭圆C的左,右顶点分别记为A,B。点S是椭圆C上位于轴上方的动点,直线AS,BS与直线分别交于M,N两点。

求椭圆C的方程;

求线段MN长度的最小值;

当线段MN的长度最小时,在椭圆C上的T满足:T到直线AS的距离等于.

试确定点T的个数。

查看答案和解析>>

(本小题满分14分)

     已知椭圆C的左,右焦点坐标分别为,离心率是。椭圆C的左,右顶点分别记为A,B。点S是椭圆C上位于轴上方的动点,直线AS,BS与直线分别交于M,N两点。

求椭圆C的方程;

求线段MN长度的最小值;

当线段MN的长度最小时,在椭圆C上的T满足:的面积为。试确定点T的个数。

查看答案和解析>>


同步练习册答案