f的取值为整数.且是单调递增的.当m与n互质时.有f=19.求f的值. 查看更多

 

题目列表(包括答案和解析)

定义在R上的函数f(x)满足:f(x+y)=f(x)f(y),且当x>0时,f(x)>1.数列{an}满足an=1-3k,f(an+1)=
(1)求f(0)的值,并证明f(x)是定义域上的增函数:
(2)求数列{an}的通项公式;
(3)设0<a<bnSn为数列{an}的前n项和,是否存在实数k,使得对任意正整数n,都有a<Sn<b?若存在,求出k的取值范围,若不存在,请说明理由.

查看答案和解析>>

(2012•梅州二模)定义在R上的函数f(x)满足:f(x+y)=f(x)f(y),且当x>0时,f(x)>1.数列{an}满足an=1-3k,f(an+1)=
1
f(
2
3
an)

(1)求f(0)的值,并证明f(x)是定义域上的增函数:
(2)求数列{an}的通项公式;
(3)设0<a<bnSn为数列{an}的前n项和,是否存在实数k,使得对任意正整数n,都有a<Sn<b?若存在,求出k的取值范围,若不存在,请说明理由.

查看答案和解析>>

我们知道,如果定义在某区间上的函数f(x)满足对该区间上的任意两个数x1、x2,总有不等式数学公式成立,则称函数f(x)为该区间上的向上凸函数(简称上凸).类比上述定义,对于数列{an},如果对任意正整数n,总有不等式:数学公式成立,则称数列{an}为向上凸数列(简称上凸数列).现有数列{an}满足如下两个条件:
(1)数列{an}为上凸数列,且a1=1,a10=28;
(2)对正整数n(1≤n<10,n∈N*),都有|an-bn|≤20,其中bn=n2-6n+10.
则数列{an}中的第五项a5的取值范围为________.

查看答案和解析>>

我们知道,如果定义在某区间上的函数f(x)满足对该区间上的任意两个数x1、x2,总有不等式成立,则称函数f(x)为该区间上的向上凸函数(简称上凸).类比上述定义,对于数列{an},如果对任意正整数n,总有不等式:成立,则称数列{an}为向上凸数列(简称上凸数列).现有数列{an}满足如下两个条件:
(1)数列{an}为上凸数列,且a1=1,a10=28;
(2)对正整数n(1≤n<10,n∈N*),都有|an-bn|≤20,其中bn=n2-6n+10.
则数列{an}中的第五项a5的取值范围为   

查看答案和解析>>

我们知道,如果定义在某区间上的函数f(x)满足对该区间上的任意两个数x1、x2,总有不等式成立,则称函数f(x)为该区间上的向上凸函数(简称上凸).类比上述定义,对于数列{an},如果对任意正整数n,总有不等式:成立,则称数列{an}为向上凸数列(简称上凸数列).现有数列{an}满足如下两个条件:
(1)数列{an}为上凸数列,且a1=1,a10=28;
(2)对正整数n(1≤n<10,n∈N*),都有|an-bn|≤20,其中bn=n2-6n+10.
则数列{an}中的第五项a5的取值范围为   

查看答案和解析>>


同步练习册答案