题目列表(包括答案和解析)
(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分。
已知
是公差为
的等差数列,
是公比为
的等比数列。
(1) 若
,是否存在
,有
说明理由;
![]()
(2) 找出所有数列
和
,使对一切
,
,并说明理由;
(3) 若
试确定所有的
,使数列
中存在某个连续
项的和是数列
中的一项,请证明。
(本题满分18分)本题共有3个小题,第1小题满分5分,第2小题满分5分,第3小题满分8分。
已知
是公差为
的等差数列,
是公比为
的等比数列。
若
,是否存在
,有
说明理由;
找出所有数列
和
,使对一切
,
,并说明理由;
若
试确定所有的
,使数列
中存在某个连续
项的和是数列
中的一项,请证明。
(本小题满分16分)
已知在直角坐标系中,
,其中数列
都是递增数列。
(1)若
,判断直线
与
是否平行;
(2)若数列
都是正项等差数列,设四边形
的面积为
.
求证:
也是等差数列;
(3)若
,
,记直线
的斜率为
,数列
前8项依次递减,求满足条件的数列
的个数。
(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分
已知抛物线方程为.
(1)若点在抛物线上,求抛物线的焦点的坐标和准线的方程;
(2)在(1)的条件下,若过焦点且倾斜角为的直线交抛物线于、两点,点在抛物线的准线上,直线、、的斜率分别记为、、,求证:、、成等差数列;
(3)对(2)中的结论加以推广,使得(2)中的结论成为推广后命题的特例,请写出推广命题,并给予证明.
说明:第(3)题将根据结论的一般性程度给予不同的评分.
(本小题满分16分)
已知在直角坐标系中,
,其中数列
都是递增数列。
(1)若
,判断直线
与
是否平行;
(2)若数列
都是正项等差数列,设四边形
的面积为
.
求证:
也是等差数列;
(3)若
,
,记直线
的斜率为
,数列
前8项依次递减,求满足条件的数列
的个数。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com