题目列表(包括答案和解析)
(本小题满分8分)
设等差数列
的前n项和为
,且
(c是常数,
N*),
.
(1)求c的值及
的通项公式;
(2)证明:
.
(本小题满分8分)
设等差数列
的前n项和为
,且
(c是常数,
N*),
.
(1)求c的值及
的通项公式;
(2)证明:
.
(本题满分16分) 本题共有3个小题,第1小题满分4分,第2小题满分4分,第3小题满分8分.
设
是等差数列,
是各项都为正数的等比数列,且
,
.
(1)求
,
的通项公式;
(2)记
,
,
为数列
的前
项和,当
为多少时
取得最大值或最小值?
(3)求数列
的前n项和
.
在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,
.(Ⅰ)求an 与bn;(Ⅱ)设数列{cn}满足
,求{cn}的前n项和Tn.
【解析】本试题主要是考查了等比数列的通项公式和求和的运用。第一问中,利用等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,
,可得
,解得q=3或q=-4(舍),d=3.得到通项公式故an=3+3(n-1)=3n, bn=3 n-1. 第二问中,
,由第一问中知道
,然后利用裂项求和得到Tn.
解: (Ⅰ) 设:{an}的公差为d,
因为
解得q=3或q=-4(舍),d=3.
故an=3+3(n-1)=3n, bn=3 n-1. ………6分
(Ⅱ)因为
……………8分
![]()
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com