12.为使函数y=sinx(>0)在区间[0.1]上至少出现50次函数的最小值.则的最小值是( ) A.98 B.197/2 C.199/2 D.100 第Ⅱ卷 查看更多

 

题目列表(包括答案和解析)

给出如下的四个命题:
?x∈(0,
π
2
)
,使sinx+cosx=
1
3

②当x∈(0,1)时,lnx+
1
lnx
≤-2

③存在区间(a,b),使得y=cosx是减函数,且sinx<0;
④函数g(x)=lg(ax+1)的定义域是{x|x>-
1
a
}

其中所有正确命题的序号是
 
. (注:把你认为所有真命题的序号都填上)

查看答案和解析>>

给出下列命题,其中正确命题的个数为(  )
①在区间(0,+∞)上,函数y=x-1,y=x 
1
2
,y=(x-1)2,y=x3中有三个是增函数;
②命题p:?x∈R,sinx≤1.则¬p:?x0∈R,使sinx0>1;
③若函数f(x)是偶函数,则f(x-1)的图象关于直线x=1对称;
④已知函数f(x)=
3x-2,      x≤2
log3(x-1),x>2
则方程f(x)=
1
2
有2个实数根.

查看答案和解析>>

已知函数f(x)是区间D⊆[0,+∞)上的增函数,若f(x)可表示为f(x)=f1(x)+f2(x),且满足下列条件:①f1(x)是D上的增函数;②f2(x)是D上的减函数;③函数f2(x)的值域A⊆[0,+∞),则称函数f(x)是区间D上的“偏增函数”.
(1)(i) 问函数y=sinx+cosx是否是区间(0,
π
4
)
上的“偏增函数”?并说明理由;
(ii)证明函数y=sinx是区间(0,
π
4
)
上的“偏增函数”.
(2)证明:对任意的一次函数f(x)=kx+b(k>0),必存在一个区间D⊆[0,+∞),使f(x)为D上的“偏增函数”.

查看答案和解析>>

已知函数f(x)是区间D⊆[0,+∞)上的增函数,若f(x)可表示为f(x)=f1(x)+f2(x),且满足下列条件:①f1(x)是D上的增函数;②f2(x)是D上的减函数;③函数f2(x)的值域A⊆[0,+∞),则称函数f(x)是区间D上的“偏增函数”.
(1)(i) 问函数y=sinx+cosx是否是区间数学公式上的“偏增函数”?并说明理由;
(ii)证明函数y=sinx是区间数学公式上的“偏增函数”.
(2)证明:对任意的一次函数f(x)=kx+b(k>0),必存在一个区间D⊆[0,+∞),使f(x)为D上的“偏增函数”.

查看答案和解析>>

已知函数f(x)是区间D⊆[0,+∞)上的增函数,若f(x)可表示为f(x)=f1(x)+f2(x),且满足下列条件:①f1(x)是D上的增函数;②f2(x)是D上的减函数;③函数f2(x)的值域A⊆[0,+∞),则称函数f(x)是区间D上的“偏增函数”.
(1)(i) 问函数y=sinx+cosx是否是区间(0,
π
4
)
上的“偏增函数”?并说明理由;
(ii)证明函数y=sinx是区间(0,
π
4
)
上的“偏增函数”.
(2)证明:对任意的一次函数f(x)=kx+b(k>0),必存在一个区间D⊆[0,+∞),使f(x)为D上的“偏增函数”.

查看答案和解析>>


同步练习册答案