18. 已知函数+1 (1)求的最小正周期, (2)求的最大值和最小值. (3)求的对称轴方程和对称中心坐标. 19 已知某海滨浴场的海浪高度y与时间t的函数关系记作y=f(t).下表是某日各时的浪高数据: t(时) 0 3 6 9 12 15 18 21 24 y(米) 1.5 1.0 0.5 1.0 1.5 1.0 0.5 0.99 1.5 经长期观测.函数y=f(t)可近似地看成是函数. (1)根据以上数据.求出函数的最小正周期T及函数表达式, (2)根据规定.当海浪高度不低于0.75米时.才对冲浪爱好者开放.请根据以上结论.判断一天内从上午7时至晚上19时之间.该浴场有多少时间可向冲浪爱好者开放? 查看更多

 

题目列表(包括答案和解析)

(本小题满分12分)

已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用(若天购买一次,需要支付天的保管费)。其标准如下: 7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.

(1)当9天购买一次配料时,求该厂用于配料的保管费用是多少元?[

(2)设该厂天购买一次配料,求该厂在这天中用于配料的总费用(元)关于的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少?

 

查看答案和解析>>

(本小题满分12分)
已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用(若天购买一次,需要支付天的保管费)。其标准如下: 7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.
(1)当9天购买一次配料时,求该厂用于配料的保管费用是多少元?[
(2)设该厂天购买一次配料,求该厂在这天中用于配料的总费用(元)关于的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少?

查看答案和解析>>

(本小题满分12分)
已知某食品厂需要定期购买食品配料,该厂每天需要食品配料200千克,配料的价格为元/千克,每次购买配料需支付运费236元.每次购买来的配料还需支付保管费用(若天购买一次,需要支付天的保管费)。其标准如下: 7天以内(含7天),无论重量多少,均按10元/天支付;超出7天以外的天数,根据实际剩余配料的重量,以每天0.03元/千克支付.
(1)当9天购买一次配料时,求该厂用于配料的保管费用是多少元?[
(2)设该厂天购买一次配料,求该厂在这天中用于配料的总费用(元)关于的函数关系式,并求该厂多少天购买一次配料才能使平均每天支付的费用最少?

查看答案和解析>>

(本小题满分9分)

已知函数

(1)求的单调减区间及图象的对称中心;

 (2)若,求的最大值及取得最大值时的值.

查看答案和解析>>

(本小题满分14分)

某公司2009年9月投资14400万元购得上海世界博览会某种纪念品的专利权及生产设备,生产周期为一年.已知生产每件纪念品还需要材料等其它费用20元,为保证有一定的利润,公司决定纪念品的销售单价不低于150元,进一步的市场调研还发现:该纪念品的销售单价定在150元到250元之间较为合理(含150元及250元).并且当销售单价定为150元时,预测年销售量为150万件;当销售单价超过150元但不超过200元时,预测每件纪念品的销售价格每增加1元,年销售量将减少1万件;当销售单价超过200元但不超过250元时,预测每件纪念品的销售价格每增加1元,年销售量将减少1.2万件.

根据市场调研结果,设该纪念品的销售单价为(元),年销售量为(万件),平均每件纪念品的利润为(元).

⑴求年销售量为关于销售单价的函数关系式;

⑵该公司考虑到消费者的利益,决定销售单价不超过200元,问销售单价为多少时,平均每件纪念品的利润最大?

 

查看答案和解析>>


同步练习册答案