题目列表(包括答案和解析)
已知四棱锥
(如图)底面是边长为2的正方形.侧棱
底面
,
、
分别为
、
的中点,
于
。
(Ⅰ)求证:平面
⊥平面
;
(Ⅱ)直线
与平面
所成角的正弦值为
,求PA的长;
(Ⅲ)在条件(Ⅱ)下,求二面角
的余弦值。
![]()
已知中心在原点,焦点在x轴上的椭圆离心率为
,且经过点
,过椭圆的左焦点作直线
交椭圆于A、B两点,以OA、OB为邻边作平行四边形OAPB。
(1)求椭圆E的方程
(2)现将椭圆E上的点的纵坐标保持不变,横坐标变为原来的一半,求所得曲线的焦点坐标和离心率
(3)是否存在直线
,使得四边形OAPB为矩形?若存在,求出直线
的方程。若不存在,说明理由。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com